• Title/Summary/Keyword: Spherical actuator

Search Result 21, Processing Time 0.022 seconds

Analysis of a 3-Degree-of-Freedom Spherical Actuator using VCM Principle (보이스 코일 모터 방식을 이용한 3 자유도 구형모터의 분석)

  • Chu, Junghyun;Niguchi, Noboru;Hirata, Katsuhiro
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.207-215
    • /
    • 2017
  • The superior performance of the spherical actuator is establishing a new trend in the industry. Spherical actuators can perform multiple degrees-of-freedom (DOF) motions by using only one actuator. Therefore, a multi-DOF device using the spherical actuator can reduce weight and simplify the structure. This paper proposes a new spherical actuator that uses the operational principle of a rotational voice coil motor. The effectiveness of the actuator is verified through 3-D finite element method.

Design of A Spherical Electromagnetic Actuator for Robot's Eyeball (로봇 안구 구동용 구형 전자석 액추에이터 설계)

  • Bach, Du-Jin;Kwak, Ho-Seong;Kim, Ha-Yong;Kim, Seung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.668-673
    • /
    • 2005
  • This paper proposes a simple actuator with a spherical rotor for robot's eyeball, which has two degrees of freedom. It features that both permanent magnets and coils are equipped in a stator and the spherical rotor with steps on its surface is driven by reaction of Lorentz force acting on the fixed coils. Such a structure is helpful to design a simple actuator and particularly suitable for a spherical actuator. Based on the FEM analysis, design parameters such as the sizes of core and permanent magnet, the width of step, coil turns and maximum current, are determined so as to maximize the torque and rotating angle. For the experimental verification of the feasibility, a prototype is manufactured and its operating characteristicsareinvestigated.

  • PDF

Effects of photostrictive actuator and active control of flexible membrane structure

  • Gajbhiye, S.C.;Upadhyay, S.H.;Harsha, S.P.
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.71-83
    • /
    • 2014
  • The purpose of this paper is to investigate the flexible structure of parabolic shell using photostrictive actuators. The analysis is made to know its dynamic behavior and light-induced control forces for coupled parabolic shell. The effects of an actuator location as well as membrane and bending components under the control action have been analyzed considering the approximate spherical model. The parabolic membrane shell accuracy is being mathematically approximated and validated comparing the light induced control forces using approximate equivalent spherical shell model. The parabolic shell with kapton smart material and photostrictive actuators has been used to formulate the governing equation in the transverse direction. The Kirchhoff-Love assumptions are used to obtain the governing equation of shell with actuator. The mechanical membrane forces and bending moments for parabolic thin shell with actuator is used to analyze the dynamic effect. The results show that membrane control action is much more significant than bending control action. Photostrictive actuators oriented along circumferential direction (actuator-2) can give better control effect than actuators placed along longitudinal direction (actuator-1). The slight difference is observed between spherical and parabolic shell for a surface with focal length to the diameter ratio of 1.00 or more than unity. Space applications often have the shape of parabolical shells or shell of revolution, due to their required focusing, aiming, or reflecting performance. The present approach is focused that photostrictive actuators can effectively control the vibration of parabolical membrane shell. Also, the actuator's location plays an important role in defining the control force.

Performance Test and Characteristics Analysis of a Spherical Reaction Wheel (구체 반작용휠 구동기의 성능 시험 및 특성 분석)

  • Kim, Dae-Kwan;Yoon, Hyung-Joo;Kim, Yong-Bok;Kang, Woo-Yong;Choi, Hong-Taek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.183-187
    • /
    • 2012
  • In the present study, a feasibility study on an innovative satellite attitude control actuator is performed. The actuator is specially designed to generate the reaction torque in an arbitrary axis, so that a satellite attitude can be controlled by using itself. It consists of a spherical flywheel and electromagnets for levitation and rotation control of the ball. As the earlier study, a rotating performance test on the spherical actuator is conducted in a single rotating axis and vertical levitation condition. From the test results, it can be confirmed that the maximum speed and torque of the innovative device are 7,200rpm and 0.7Nm, respectively. Using torque-voltage characteristics of the spherical motor, an open-loop control (V/f constant control) is performed, and the test results show excellent control performance in acceleration and deceleration phases.

  • PDF

Design and Control of 3 D.O.F. Spherical Actuator Using the Magnetic Force of the Electromagnets (전자석의 자기력 제어를 이용한 구형 3 자유도 액추에이터의 설계 및 제어)

  • Baek, Yun-Su;Yang, Chang-Il;Park, Jun-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1341-1349
    • /
    • 2001
  • In this paper, 3 D.O.F. actuator, which has three degrees of freedom in one joint, is proposed. The proposed 3 D.O.F. spherical actuator is composed of the rotor and atator. The upper plate of the stator supports the rotor and five electromagnets are located at the base of the stator. The rotor has two permanent magnets, and each rotational axis of the rotor gimbal system is supported by the bearing. To find out the governing equations for the torque generation, Coulombs law and Lorentz force with respect to magnetism is applied. As the experimental results, if the distance between electromagnet and permanent maget is far enough, the force between these magnets can be expressed from current of coils and z-axial distance. For the purpose of control 3 D.O.F. actuator, PID control law is applied. The experimental results are presented to show the validity of the proposed 3 D.O.F. actuator.

Development and Performance Test of a Spherical Reaction Wheel Actuator with Magnetic Levitation (자기부상을 적용한 구체 반작용휠 구동기 개발 및 성능 시험)

  • Kim, Dae-Kwan;Yoon, Hyung-Joo;Kim, Yong-Bok;Kang, Woo-Yong;Choi, Hong-Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.731-737
    • /
    • 2012
  • In the present study, a feasibility study on an innovative satellite attitude control actuator is performed. The actuator is specially designed to generate the reaction torque in an arbitrary axis, so that a satellite attitude can be controlled by using itself. It consists of a spherical flywheel and electromagnets for levitation and rotation control of the ball. As the earlier study, a rotating performance test on the spherical actuator is conducted in a single rotating axis and vertical levitation condition. From the test results, it can be confirmed that the maximum speed and torque of the innovative device are 7,200rpm and 0.7Nm, respectively. Using a velocity-voltage characteristic curve of the spherical motor, an open-loop control (V/f constant control) is performed, and the test results show excellent control performance in acceleration and deceleration phases.

Kinematic Analysis of Fault-Tolerant 3 Degree-of-Feedom Spherical Modules (고장에 강인한 구형 3자유도 모듈에 관한 기구학적 해석)

  • 이병주;김희국
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2846-2859
    • /
    • 1994
  • This work deals with kinematic analysis of fault-tolerant 3 degree-of-freedom spherical modules which have force redundancies in its parallel structure. The performance of a redundantly actuated four-legged module with no actuator failure, a single actuator failure, partial and half failure of dual actuator are compared to that of a three-legged module, in terms of maximum force transmission ratio, isotropic characteristics, and fault-tolerant capability. Additionally, a system with an excess number of small floating actuators is considered, and the contribution of these small actuators to the force transmission and fault-tolerant capability is evaluated. This study illustrates that the redundant actuation mode allows significant saving of input actuation effort, and also delivers a fault tolerance.

A Study on Actuator Design for SA Compensation (구면 수차 보상을 위한 엑츄에이터 설계에 대한 연구)

  • 이성훈;박관우;김진아;최인호;김진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.346-350
    • /
    • 2004
  • In Blu-ray(BD) optical system, as a short laser wavelength of laser diode and thin cover layer thickness of' disc, the proper adjustment of spherical aberration should be performed. Considering thin cover layer' thickness and tolerance variation of disc in BD optical system, spherical aberration in BD format is mort: serious than CDㆍDVD format Especially, in dual-layer disc, to compensate the aberration at each layer, optical component should be moved finely in the way of optical path. In this study, 1 -axis moving actuator was introduced as the method of compensating the spherical aberration, and the mechanism of the system was described. Finally, its effect on optical system will be mentioned.

  • PDF