• Title/Summary/Keyword: Spherical Wave

Search Result 136, Processing Time 0.026 seconds

Regression Progress to Evaluate Metal Scale Thickness using Microwave (전파를 이용한 도체 Scale 분석에 Regression Progress 기법 이용 연구)

  • Muhn, Sung-Jin;Park, Wee-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.1-5
    • /
    • 2010
  • This paper deals with a method to measure the thickness of scale-layer, iron oxide formed on the surface of the rolling steel, using a dielectric lens antenna. The dielectric lens antenna has an independent characteristic with the frequency in the X-band and changes the spherical wave radiated from a horn antenna into a plane wave at the focusing point. Using this concept, we regard a scale-layer on the rolling steel as a dielectric-PEC(Perfect Electric Conductor) layer and apply a theoretical analysis of the normal-incident plane wave. To reduce the phase error arising from the use of the dielectric lens antenna, this paper utilizes a regression process algorithm. In comparison with the conventional iteration algorithm, the present algorithm led to a unique solution for the thickness of the scale-layer.

Propagation of Elastic Waves in Fiber Reinforced Composites (섬유강화 복합재료 내의 탄성파 전파)

  • Kim, Jin-Yeon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.65-72
    • /
    • 1996
  • A dynamic self-consistent method previously proposed and validated for the composites containing spherical inclusions is applied to the simplest two dimensional problems : SH wave propagation in unidirectional fiber reinforced composites. The self-consistent conditions for SH wave are derived without limitation on frequency and the wave speed and coherent attenuation are calculated for two composites. THe results of the present theory are compared with those of the multiple scattering theories and another self-consistent theory. At low volume fractions, the present theoretical results coincide with those of the multiple scattering theory using exact pair-correlation function, whereas the results based on another self-consistent theory deviate markedly from the others. As the volume fraction increases, the three theories give different results although they have qualitatively similar trends. The present theoretical results for composites considered in this paper exhibit less dispersion and physically realizable attenuation. An important observation is that the multiple scattering theory predicts vanishingly small attenuation at low frequency with volume fraction is high.

  • PDF

A Study on the Theory and Its Verification of Dynamic Analysis Program (MPDAP) for Modelling of Saturated Multi Phase Porous Media (포화된 다공성 지반의 모델링을 위한 동적해석 프로그램(MPDAP)의 이론 및 이의 검증에 괄한 연구)

  • 김광진;문홍득
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.5-18
    • /
    • 1997
  • In order to make reliable ground shock predictions in saturated geological media, it is necessary to use multi -phase material models and numerical codes. This paper presents the results of theoretical study of the fundamental behavior of multi-phase porous media subjected to high dynanlic loadings, and deals with the development of numerical code MPDAP with JWL(Jones-Wilkins-Lee) model, which is capable of considering the kinds and characters of explosives. To check the global equilhorium equations of the numerical code, we carried out some verifications. In the cases of the elastic spherical wave propagation in a single phase medium, one-dimensional linear ronsolidation, and one timensional wave propagation in saturated linear elastic soils and rocks, the results calculated by MPDAP show close agreement with closed-form solutions or numerical solutions generated with two phase code.

  • PDF

A Study on the Ray Based Broad Band Modeling for Shallow Water Acoustic Wave Propagations (천해 음파전달 모의에 적합한 음선기반 광대역 신호 모델링 기법에 관한 연구)

  • Park Cheol-Soo;Cho Yong-Jin;Ahn Jong-Woo;Seong Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.298-304
    • /
    • 2006
  • This paper proposes a ray-based forward modeling scheme which is suitable for the shallow water acoustic wave propagation simulations. The proposed model comprises of ray tracings for the layered media of which sound speed profiles are interpolated linearly. considerations of plane and spherical wave reflection coefficients. and calculations of the phases and the amplitudes of eigen rays. The main characteristic of the scheme is fast simulation time due to direct calculation of the broad-band time signals in the time-domain, i.e. without transformation of the frequency-domain solutions to the time si 밍 131s. Finally, we applied the model to 4-types of test environments and compared the resulting signals with those of ORCA and Ram in order to validate the proposed model.

Wavefront Aberration Measurement of DVD pick-up lenses with a Shack-Hartmann Sensor and a Point Source (Shack-Hartmann 파면분석기와 점광원을 이용한 DVD 픽업 렌즈의 수차 측정)

  • Kang, Dong-Won;Lee, Jin-Seok;Hahn, Jae-Won
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.135-138
    • /
    • 2007
  • Using a Shack-Hartmann sensor and sub-wavelength sized pinhole point source, we develope an optical testing system that measures the wavefront error of high numerical aperture and small sized optical components. The subwavelength sized pinhole generates perfect spherical waves with large diffraction angle and this makes possible to test high numerical aperture optics. The Shack-Hartmann sensor reconstructs the wavefront and calculates the aberrations. We make a home-made reference plane wave source which generates nearly perfect plane waves and the calibration with this plane source gives the overall uncertainty of the optical testing system 0.010 $\lambda$ rms.

  • PDF

Numerical Solutions for Thick-Welled Laminated Composite Spheres under Impact Pressure (충격내압을 받는 복합적층 중공구의 수치해)

  • Oh Guen;Sim Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.293-302
    • /
    • 2005
  • In this paper, the thick-walled laminated, orthotropic as well as bimaterial, composite hollow spheres under impact pressure are analyzed in detail by using the semi-discrete finite element method with the Houbolt time-integration scheme which results in unconditionally stable transient numerical results. Numerical results are obtained by using the self-constructed spherically symmetric (one-dimensional) and axially symmetric (two-dimensional) finite element programs, and compared with the previous solutions by other researchers, being shown some of which are incorrect. The finite element package Nastran is also adopted for numerical comparison.

Investigation of the Validity of the Image Model for the Analysis of Spherical Wave Reflection

  • Suh, Jin-Sung;Cheung, Wan-Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.27-34
    • /
    • 1998
  • The validity of the image model is investigated both analytically and experimentally in a half space with an infinite single reflecting surface present. This paper exploits the Sommerfeld integral that represents the exact solution for the reflected field in the half space. The solution is shown to be obtained by direct numerical integration which yields more accurate and stable results. The predicted results from the image model are compared to those from the direct numerical integration of the Sommerfeld integral. It is also experimentally demonstrated that the image model gives acceptably accurate results. It is of significance that this paper reveals analytical and experimental validation of using the image model except near-grazing incidence.

  • PDF

Continuous Processing of Monodispersed Zirconia Powders (초음파 혼합 연속공정에 의한 단분산 지르코니아 분체의 합성)

  • Rhee, Jhun;Jo, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.919-925
    • /
    • 1992
  • Continuous synthesis process for monodispersed zirconia powders with ultrasonic wave mixing was developed. Reactant solutions were flowed through a T-tube with small diameter and then mixed in a microscale with ultrasonification. Reaction and aging were followed during the mixed solution of reactants is in plug flowing through a narrow long teflon tubing. Zr(n-OC4H9)4 in ethanol and H2O in ethanol were used as reactants. From this process monodispersed, spherical, non-agglomerated, singlet hydrated zirconia powders with 0.6 $\mu\textrm{m}$ average size were obtained. Geometrical standard deviation of the particle size distribution was less than 1.2 with ultrasonic mixing, and the geometrical standard deviation was not affected by the flow rate of the reactants.

  • PDF

Optimization of base stations' configuration in UWB-based indoor localization (UWB를 이용한 실내측위의 베이스 스테이션 최적 배치)

  • Chang Ho-Wook;Cha Maeng-Q.;Kim Yong-Il;Yu Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.3-7
    • /
    • 2006
  • Indoor localization is getting more and more importance with the increasing demand for location based service. Location based service necessarily requires the information about customers' locations to provide them the right service according to their changing locations. To satisfy that requirement, GPS is used to achieve outdoor localization. However, there is no leading technology to achieve indoor localization. Indoor localization through UWB wave and TDOA algorithm is considered as the most accurate method until now. In implementing that method, configuration of base stations that serve as control points affects the localization accuracy. Thus, this paper discusses about optimal configuration of base stations. The variation in localization accuracy according to spatial relationship between an object and base stations Is mentioned through SEP also.

  • PDF

Residual stress measurement using acoustic microscope (초음파현미경을 이용한 잔류 응력 측정)

  • Kim, Hyun;Ko, Dea-sik;Jun, Kye-suk
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.259-262
    • /
    • 1998
  • In this paper, we have studied measurement technique for inhomogeneous residual stress using acoustic microscopy with quadrature detector. In experiment, aluminum tensile specimen with the flaw has been made and loaded by Instrone. A spherical typed acoustic transducer of center frequency 5MHz has been used for sending a longitudinal acoustic wave into a stressed specimen. It has been shown in experimental results that the phase has largely changed around the flaw that residual stress has been largely distributed and acoustic microscopy has been used in the field of residual stress measurement.

  • PDF