• Title/Summary/Keyword: Spherical Robot

Search Result 44, Processing Time 0.039 seconds

Analysis Torque Characteristic and Improved Efficiency of Permanent Magnet Multi-D.O.F. Spherical Motor (영구자석형 다자유도 구형전동기의 토크특성 분석과 효율 향상에 대한 연구)

  • Lee, Ho-Joon;Kang, Dong-Woo;Park, Hyun-Jong;Hong, Kyung-Pyo;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.814-815
    • /
    • 2011
  • A surfaced permanent magnet spherical motor is capable of operating as three degree of freedom that used for the joints of the robot's arm, leg, and eyes. Ongoing research like new concept is essential part of motor field, it will make a great contribution in the future the overall portion of the motor, is becoming expected. The author analysis torque characteristics in spherical motor with state of rotating and positioning. And future design direction is smaller motors with equivalent or higher output. Solutions as torque and efficiency improvements are selecting the core with special processing type like powder metallurgy materials. Their special characteristic is high permeability and low eddy current losses at high speed, so improved the torque and efficiency.

  • PDF

Design of Omnidirectional Shock Absorption Mechanism and Stabilizing Dynamic Posture of Miniature Sphere Type Throwing Robot (구형 투척 로봇의 전방향 충격흡수 구조 설계 및 동적 자세 안정화)

  • Jung, Wonsuk;Kim, Young-Keun;Kim, Soohyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • In this paper, we propose a novel compact surveillance throwing robot which has an omnidirectional shock absorption mechanism and an active control part of wheel treads to stabilize the dynamic posture of a miniature sphere type throwing robot. This throwing robot, which weighs 1.14kg and is 110mm in height, is designed in a spherical shape to be easily grabbed for throwing. Also, the omnidirectional shock absorbing aspect is designed using several leaf springs connected with inner and outer wheels. The wheel treads control part consists of a link mechanism. Through the field experiments, this robot is validated to withstand higher than 17Ns of omnidirectional impulse and increase the stabilized max speed three times from 11 rad/s to 33rad/s by increasing wheel treads.

Analysis Torque Characteristics and Improved Efficiency of Permanent Magnet Multi-D.O.F. Spherical Motor (영구자석형 다자유도 구형전동기의 토크특성 분석과 효율 향상에 대한 연구)

  • Lee, Ho-Joon;Kim, Yong;Jang, Ik-Sang;Park, Hyun-Jong;Kang, Dong-Woo;Won, Sung-Hong;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • A surfaced permanent magnet spherical motor is capable of operating as three degree of freedom that used for the joints of the robot's arm, leg, and eyes. Ongoing research like new concept is essential part of motor field, it will make a great contribution in the future the overall portion of the motor, is becoming expected. The author analysis torque characteristics in spherical motor with state of rotating and positioning. And future design direction is smaller motors with equivalent or higher output. Solutions as torque and efficiency improvements are selecting the core with special processing type like powder metallurgy materials. Their special characteristic is high permeability and low eddy current losses at high speed, so improved the torque and efficiency.

Development of FACS-based Android Head for Emotional Expressions (감정표현을 위한 FACS 기반의 안드로이드 헤드의 개발)

  • Choi, Dongwoon;Lee, Duk-Yeon;Lee, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • This paper proposes the creation of an android robot head based on the facial action coding system(FACS), and the generation of emotional expressions by FACS. The term android robot refers to robots with human-like appearance. These robots have artificial skin and muscles. To make the expression of emotions, the location and number of artificial muscles had to be determined. Therefore, it was necessary to anatomically analyze the motions of the human face by FACS. In FACS, expressions are composed of action units(AUs), which work as the basis of determining the location and number of artificial muscles in the robots. The android head developed in this study had servo motors and wires, which corresponded to 30 artificial muscles. Moreover, the android head was equipped with artificial skin in order to make the facial expressions. Spherical joints and springs were used to develop micro-eyeball structures, and the arrangement of the 30 servo motors was based on the efficient design of wire routing. The developed android head had 30-DOFs and could express 13 basic emotions. The recognition rate of these basic emotional expressions was evaluated at an exhibition by spectators.

Path Planning and Control of an Articulated Robot for Polishing Large Aspherical Surface (대구경 비구면 연마를 위한 다관절 로봇의 경로 계획 및 제어)

  • Kim, Ji-Su;Lee, Won-Chang
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1387-1392
    • /
    • 2019
  • Aspherical mirrors have lighter weight and better performance than spherical mirrors, but it is difficult to process their shape and measure the processing precision. Especially, large aperture aspherical mirrors mounted on satellites need high processing precision and long processing time. The computerized numerically controlled machine of gantry type has been used in polishing process, but it has difficulties in processing the complex shapes due to the lack of degrees of freedom. In order to overcome this problem we developed a polishing system using an articulated industrial robot. The system consists of tool path generating program, real-time robot monitoring, and control program. We show the performance of the developed system through the computer simulation and actual robot operation.

Improved Design for Enhanced Grip Stability of the Flexible Gripper in Harvesting Robot (파지 안정성을 강화한 과수 수확용 로봇 그리퍼의 설계 개선)

  • Choi, Du Soon;Moon, Sun Young;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • In robotic harvesting, a gripper to manipulate the fruits needs to be attached to the robot system. We proposed a flexible robot gripper that can actively respond to the shape of an object such as fruits in the previous work. However, we found that there is a possibility of not being reliably gripped when the object slides during contact with a finger. In this paper, the improved gripper design is proposed to fundamentally solve the problems of the previous gripper. The position of the finger and the maximum closed position are changed, and the design improvement is performed to increase the grip stability by changing the installation angle of the link portion of the finger. Based on the improved design, a modified gripper is fabricated by 3-D printing, and then gripping experiments are performed on spherical object and fruit model object. It is shown that the gripper can stably grip the objects without excessive bending of the finger link of the gripper. The contact pressure between the finger and the surface of the object is measured, and it is verified that it is a sufficiently small pressure that does not cause damage to the fruit. Therefore, the proposed gripper is expected to be successfully applied in harvesting.

Kinematic Modeling for a Type of Mobile Robot using Differential Motion Transformation (미소운동 변환방법을 이용한 몇가지 이동로봇의 기구학 모델)

  • Park, Jae-Han;Kim, Soon-Chul;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1145-1151
    • /
    • 2013
  • Kinematic modeling is a prerequisite for motion planning and the control of mobile robots. In this paper, we proposed a new method of kinematic modeling for a type of mobile robot based on differential motion transformation. The differential motion implies a small translation and rotation in three-dimensional space in a small time interval. Thus, transformation of the differential motion gives the velocity relationship, i.e., Jacobian between two coordinate frames. Since the theory of the differential motion transformation is well-developed, it is useful for the systematic velocity kinematic modeling of mobile robots. In order to show the validity for application of the differential motion transformation, we obtained velocity kinematic models for a type of exemplar mobile robot including spherical ballbots.

A Study of the Humanoid Eye drive System (휴머노이드 안구 구동시스템에 대한 고찰)

  • Kim, Jae-Hyeok;Kang, Dong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.67-68
    • /
    • 2015
  • This paper describes humanoid eye drive system. The eye drive system has been developed by using more than two motors for operating 2 degree-of-freedom. It needs to accomplish purpose for operating the robot eye like movement of the human eye. However it makes problems that it increases energy consumption and requires relatively large space of operating system. Thus it needs technology to minimize and have high efficiency. This paper introduces the adequacy of perviously eye drive system. And it shows research value of the spherical motor system.

  • PDF

Master Arm and Control System for Teleoperated Bolting Robot (원격 제어되는 볼팅 로봇을 위한 마스터암과 제어 시스템)

  • Lee, Sang Woo;Park, Jang Woo;Park, Shin Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.185-193
    • /
    • 2013
  • The construction automation provides safer and more productive working environment of construction site. We developed the automation system of bolting operation for high-rise building in the previous research. However, this system has a weak point that the operation has to be processed in the air with the operator in the cabin. This weakness leads operators to considerably dangerous environment. Therefore, we proposed the tele-operation system in order to supplement this weak point. Furthermore, it leads more effective operation by application of more intuitive controller; spherical coordinate based Master Arm than the joystick in the Mobile Bolting Robot system. These proposed system and controller were evaluated based on Fitts' law paradigm, which is a general estimation method of speed accuracy of task. Through the experimental results, new developed tele-operation system is compared with the actual operation and it discloses distinctions between two systems. As a result, it is found that new developed teleoperation system can be possible to replace the operation in the cabin.

A Research on Ball-Balancing Robot (볼 벨런싱 로봇에 관한 연구)

  • Kim, Ji-Tae;Kim, Dae-young;Lee, Won-Joon;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.463-466
    • /
    • 2017
  • The purpose of this paper is to develop a module capable of all-directional driving different from conventional wheeled robots, and to solve the problems of the conventional mobile robot with side driving performance degradation, It is possible to overcome the disadvantages such as an increase in the time required for the unnecessary driving. The all - direction spherical wheel drive module for driving a ball - balancing robot is required to develop a power transfer mechanism and a driving algorithm for driving the robot in all directions using three rotor casters. 3DoF (Axis) A driver with built-in forward motion algorithm is embedded in the module and a driving motor module with 3DoF (axis) for driving direction and speed is installed. The movement mechanism depends on the sum of the rotation vectors of the respective driving wheels. It is possible to create various movement directions depending on the rotation and the vector sum of two or three drive wheels. It is possible to move in different directions according to the rotation vector field of each driving wheel. When a more innovative all-round spherical wheel drive module for forward movement is developed, it can be used in the driving part of the mobile robot to improve the performance of the robot more technically, and through the forward-direction robot platform with the drive module Conventional wheeled robots can overcome the disadvantage that the continuous straightening performance is lowered due to resistance to various environments. Therefore, it is necessary to use a full-direction driving function as well as a cleaning robot and a mobile robot applicable in the Americas and Europe It will be an essential technology for guide robots, boarding robots, mobile means, etc., and will contribute to the expansion of the intelligent service robot market and future automobile market.

  • PDF