• Title/Summary/Keyword: Spermatocytogenesis

Search Result 6, Processing Time 0.017 seconds

Seminiferous Epithelium Cycle and Developmental Stages of Spermatids in the Clethrionomys rufocanus

  • Lee, Jung-Hun
    • Development and Reproduction
    • /
    • v.17 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • The seminiferous epithelium cycle and developmental stages of spermatids in Clethrionomys rufocanus were observed under a light microscope. The seminiferous epithelium cycle was divided into 8 stages. Type Ad spermatogonia appeared through all stages. Type Ap, In, and B spermatogonia appeared in stages I, II, III, and IV. In the first meiosis prophase, the leptotene spermatocytes appeared from stage V, the zygotene spermatocytes in stages I, VI, VII, VIII, the pachytene spermatocytes from stages II to VI, the diplotene spermatocytes in stage VII. The meiotic figures and interkinesis spermatocytes were observed in stage VIII. Developing spermatids were subdivided into 10 steps, based on the morphological characteristics such as the acrosome formation changes in spermatozoa, nucleus, cytoplasm, and spermiation changes. The C. rufocanus spermatocytogenesis and spermiogenesis results displayed similar results with Apodemus agrarius coreae and A. speciosus peninsulae. Considering all the results, the spermatogenesis may be useful information to analyze the differentiation of spermatogenic cells and the breeding season.

Glycogen Effect of the Sperm Maturation during the Spermiogenesis of Rana catesbeiana (황소개구리 (Rana catesbeiana)의 정자변태과정 중 글리코겐이 정자 성숙에 미치는 역할)

  • Go, Song-Haang;Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.257-266
    • /
    • 2001
  • To investigate the process of spermoigenesis and glycogen effect during the spermatogenesis of Rana catesbeiana, the morphological characteristics of the testes were examined by light and transmission electron microscopy. Spermiogenesis of R. catesbeiana was divided into three stages on the basis of the features of the nucleus and the cytoplasm organelles. Except for the primary spermatogonia, the phases from the spermatocytogenesis to the spermatids before spermiation phase were surrounded by spermatocyst. Especially , the glycogen particles were not observed until in the stage of spermatocytogenesis, but from the early spermatids to the maturation phase were observed in the nucleus, acrosome and cytoplasm of the spermatids. The present result suggests that the glycogen may play an important role in the sperm maturation, and as a source of the energy in the wave-movement of sperm tail.

  • PDF

Functions of somatic cells for spermatogenesis in stallions

  • Muhammad, Shakeel;Minjung, Yoon
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.654-670
    • /
    • 2022
  • Spermatogenesis and testis development are highly structured physiological processes responsible for post-pubertal fertility in stallions. Spermatogenesis comprises spermatocytogenesis, meiosis, and spermiogenesis. Although germ cell degeneration is a continuous process, its effects are more pronounced during spermatocytogenesis and meiosis. The productivity and efficiency of spermatogenesis are directly linked to pubertal development, degenerated germ cell populations, aging, nutrition, and season of the year in stallions. The multiplex interplay of germ cells with somatic cells, endocrine and paracrine factors, growth factors, and signaling molecules contributes to the regulation of spermatogenesis. A cell-tocell communication within the testes of these factors is a fundamental requirement of normal spermatogenesis. A noteworthy development has been made recently on discovering the effects of different somatic cells including Leydig, Sertoli, and peritubular myoid cells on manipulation the fate of spermatogonial stem cells. In this review, we discuss the self-renewal, differentiation, and apoptotic roles of somatic cells and the relationship between somatic and germ cells during normal spermatogenesis. We also summarize the roles of different growth factors, their paracrine/endocrine/autocrine pathways, and the different cytokines associated with spermatogenesis. Furthermore, we highlight important matters for further studies on the regulation of spermatogenesis. This review presents an insight into the mechanism of spermatogenesis, and helpful in developing better understanding of the functions of somatic cells, particularly in stallions and would offer new research goals for developing curative techniques to address infertility/subfertility in stallions.

Seminiferous Epithelium Cycle in the Korea Squirrel, Tamias sibiricus

  • Jung Tae-Dong;Lee Jung-Hun
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.275-283
    • /
    • 2004
  • The annual changes in testis weight and diameter of seminiferous tubules, and the seminiferous epithelium cycle of Tamias sibiricus were studied by light microscope. Testis weight and diameter of seminiferous tubule are significantly increased from January to July, and decreased rapidly to the size from August to December. Spermatogenesis occurs from January to July, and spermatocytogenesis are produced from August to December. The cycle of the seminiferous epithelium was divided into 12 stages during the development of spermatids as a changes of the nucleus and acrosomal structure, presence and/or absence of residual body, appearance and/or absence of sperm tail and meiotic figure and spermiation. The dark type spermatogonia (Ad) are appeared in all stages (I ~ XII), and the spermatids of step 10 are observed at I, II, X and XII stages. The spermatids of step 11 are appeared in III and IV stages, only the step 12 spermatid observed in V stage.

  • PDF

Annual Cycle of the Seminiferous Epithelium of Miniopterus schreibersi fuliginosus

  • Kang Mu-Shik;Lee Jung-Hun
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.435-445
    • /
    • 2004
  • The characteristics of the testis and the annual cycle of the seminiferous epithelium of the Miniopterus schreibersi fuliginosus were examined by optical microscopy. The testis weight and diameter of the seminiferous tubules were increased gradually from May to July, and the highest activity was observed in August. The size then decreased rapidly from October. Spermatogenesis began in May, peaked in August, and was suspended from October to April in the following year. Spermatocytogenesis were produced from May to July. Spermiogenesis occurred from August to September. In particular, immature spematogenic cells in the seminiferous tubules were engulfed by the phagocytosis of Sertoli cells in October. From November to April, the seminiferous tubuly contained only Sertoli cells and Ad spermatogonia. Therefore, the periodic changes in the seminiferous epithelium of M. S. fuliginosus suggest that a long hibernation is an adaptive strategy for the preservation of energy and the regulation of the breeding cycle.

  • PDF

Phosphamidon-induced apoptosis in the testis of chickens and rats (Phosphamidon 을 투여한 닭 및 랫트 고환의 Apoptosis 에 대한 연구)

  • Lee, Cha-Soo;Chung, Jae-Yong;Park, Sang-Joon;Jeong, Kyu-Shik
    • Korean Journal of Veterinary Pathology
    • /
    • v.3 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Phosphamidon(PMD) is orgnophosphate insecticide broadly using in agriculture. In order to study PMD toxicity in the testis, histopathological change and apoptosis were assessed following acute and chronic oral administration in rats and chickens. In acute studies, histopathological changes included necrosis and desquamation of spermatogenic cells, multinucleated giant cells in the lumen of seminiferous tubules, and necrotic cells and the giant cells in the epididymal lumen. Atrophy of seminiferous tubule was seen in the chronic exposure with low doses. The toxic effects of PMD in chronic exposure including clinical signs and histopathological changes were more pronounced in chickens than rats. Apoptosis assessment was performed by TUNEL method and Hoechst staining. TUNEL-positive apoptotic cells were found in spermatocytes of seminiferous tubules, testicular apoptosis was more prominent following acute exposure than control and chronic exposure. Above mentioned result noticed that PMD causes apoptotic death and effects directly the spermatocytogenesis.

  • PDF