• Title/Summary/Keyword: Sperm Nucleus

Search Result 110, Processing Time 0.027 seconds

Gold Storage and Cryopreservation of Grey Mullet(Mugil cephalus) Sperm (숭어(Mugil cephalus) 정자의 냉장.냉동보존)

  • 장영진;최윤희;임한규;고강희
    • Journal of Aquaculture
    • /
    • v.12 no.1
    • /
    • pp.57-62
    • /
    • 1999
  • Experiments were performed to study the activity and fertility of grey mullet (Mugil cephalus) sperm after the courses of cold storage and cryopreservation. The head of spermatozoon showing spherical shape was sized $1.26{\pm}0.08 \{mu}textrm{m}$ in diameter and its nucleus contained numerous granular chromatins. Flagellum of tail showed typical 9+2 structure. Preservation of grey mullet sperm was the most effective when it was stored with serum of the same species at $0^{\circ}C$ and sperm activity index was similar in egg-tris, 0.1 M, 0.3 M and 0.5 M glucose. When grey mullet sperm were cryopreserved in MFRS as diluent with 10% dimethyl sulfoxide was effective compared with other diluents. Some of post-thawed spermatozoa showed the enlarged head and ruptured plasma membrane compared with unfrozen spermatozoa.

  • PDF

A Study on the Ultrastructure of Reproductive Organ of Korean Planaria (Dugesia japonica) (한국산(韓國産) 플라나리아(Dugesia japonica Ichikawa et Kawakatsu)생식기관(生殖器官)의 미세구조(微細構造)에 관(關)한 연구(硏究))

  • Chang, N.S.;Kim, W.K.
    • Applied Microscopy
    • /
    • v.15 no.1
    • /
    • pp.31-58
    • /
    • 1985
  • The morphological study on different types of cells of reproductive organ including spermatogenesis in the adult planaria was performed to observe their cytochemical and ultrastructural characteristics. 1. Spermatogenesis The circular luminated material appears immediately inside the nuclear envelope of early spermatid and is found also in the nucleus of sperm, but typical acrosomal structures cannot be observed. Approximately ten of small-sized mitochondria occur around the nucleus in the transitional phase from primary spermatocyte to secondary spermatocyte, but in sperm a long mitochondrion is closely associated with nucleus, parellel to long axis of it. The sperm has a relatively long head connected with two tails via hollow neck. 2. Reproductive organ The penis bulb and the bursa stalk were observed. (1) Penis bulb The cells constituted penis bulb are classified into six types on the basis of ultrastructure of the cells and cytochemistry of the cytoplasmic granules. 1) A-type cells: These cells exhibiting low electron density are mainly occupied by large nucleus. These cells possess two different types of granules: highly electron-dense round granules with an average size of $0.9{\mu}m$, and electron-dense granules exhibit PAS-positive reaction. 2) B-type cells contain PAS-positive granules with the size of about $0.4{\mu}m$. They are rich in free ribosomes and mitochondria. 3) C-type cells are found to be dark cells due to high electron-density. These cells are largely occupied by large nucleus. 4) D-type cells: These cells are seen as light cells which have poorly developed cell organelles. 5) E-type tells: These cells contain a large number of glycogen granules which occupy most of cell. 6) F-type cells: These arc parietal epidermal cells surrounding the genital antrum. These cells are characterized by their finger-like shapes and the presence of a number of electron-dense, irregularly-shaped structures inside cells. The relatively large electron-lucent granules can be also found. The F-type cells possess numerous microvilli on their free surfaces. (2) Bursa stalk The cells constituted bursa stalk are classified into 3 types on the basis of cell shapes and presences of electron-dense or electron-lucent granules. 7) G-type cells with a long cytoplasmic process. They have large nuclei and poorly developed cell organelles. 8) H-type cells: These cells are characterized by the presence of a long cytoplasmic process and relatively highly electron-dense cytoplasmic profile. They have poorly developed cell organelles. 9) I-type cells contain large electron-lucent granules which exhibit negative reactions with three kinds of cytochemical staining methods used in this experiment. The fine electron-dense structures can be found inside these granules.

  • PDF

An Ultrastructural Study on the Spermatogenesis of Xiphophorus maculatus (Xiphophorus maculatus의 정자형성과정에 관한 미세구조)

  • Kim, Dong-Heui;Reu, Dong-Suck;Deung, Young-Kun
    • Applied Microscopy
    • /
    • v.33 no.4
    • /
    • pp.267-274
    • /
    • 2003
  • The ultrastructures of spermatogenesis and sperm in Xiphophorus maculatus, ovoviviparous fish were investigated by electronmicroscopy The testis of Xiphophorus maculatus contained numerous testicular sacs, and spermatogenesis was synchronized in these testicular sac. In the case of spermatogonium, the nucleus was comparatively large ellipsoidal, and the nucleolus and mitochondria showed a marked development. The size of primary spermatocyte was smaller than that of spermatogonia, and that of secondary spermatocyte was smaller than that of primary spermatocyte. The chromatin of spermatocyte was highly condensed according to their development. The nucleus with electron-dense was round shape. In spermiogenesis, flagella started to be formed and chromatin was more condensed. The mitochondria were rearranged along the tail. The sperm was formed by loss of cytoplasm. The head of mature sperm was long cone shape and had not acrosome. The microtubules of flagella were arranged 9+2 structure. Also, the sperm has a loop-like structure at the end of a tail.

Simple Classification of Male Mouse Germ Cells using Hoechst 33258 Staining (Hoechst 33258 Staining을 이용한 웅성 생쥐 성세포의 간편 분류)

  • Kim, Kyoung Guk;Park, Young Sik
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.213-218
    • /
    • 2015
  • In the study for a differentiation and development of spermatogonial cells, the researchers should commonly require a simple, fast and reasonable method that could evaluate the developmental stage of male germ cells without any damage and also relentlessly culture them so far as a cell stage aiming at experimental applications. For developing the efficient method to identify the stage of sperm cells, the morphological characteristics of sperm cells were investigated by staining the cells with blue fluorescent dye Hoechst 33258, and a criterion for male germ cell classification was elicited from results of the previous investigation, then the efficiency of the criterion was verified by applying it to assort the germ cells recovered from male mice in age from 6 to 35 days. As morphological characteristics, spermatogonia significantly differed from spermatocytes in size, appearance and fluorescent patches of nucleus, and spermatids could also be distinguished from spermatozoa by making a difference in the volume and shape of nucleus and the shape and fluorescence of tail. Aforesaid criterion was applicable for classifying in vitro cultured sperm cells by verifying its efficiency and propriety for assorting the stages of testicular germ cells. However, the fluorescent staining showed that germ cells in mouse testis should be dramatically differentiated and developed at 21 days and 35 days of age, which were known as times of sexual puberty and maturity in male mice, respectively. In conclusion, the results indicated that this simple criterion for sperm cell classification using fluorescence staining with Hoechst 33258 may be highly efficient and reasonable for spermatogenesis study.

Spermatogenesis and Ultrastructural Characteristics of Spermatozoa of Brackish Water Diploid Clam, Corbicula japonica (Bivalvia: Corbiculidae) (기수산 2배체 재첩, Corbicula japonica(Bivalvia: Corbiculidae)의 정자형성과정 및 정자의 미세구조적 특징)

  • Jun, Je-Cheon;Kim, Bong-Seok;Chung, Ee-Yung;Kim, Jin-Hee;Park, Gab-Man;Park, Sung-Woo
    • Development and Reproduction
    • /
    • v.13 no.2
    • /
    • pp.115-122
    • /
    • 2009
  • Spermatogenesis and ultrastructural characteristics of sperm of brackish water diploid Corbicula japonica were investigated by electron microscope observations. Based on the cytological studies, the spermatozoon of this species (brackish water diploid) C japonica is approximately 55 ${\mu}m$ in length. The sperm head (about 12 ${\mu}m$ long) is elongated and tapers with a slight curve. Sperm nucleus is about 7.90 ${\mu}m$ long, and the acrosome is about 2.70 ${\mu}m$ long: The morphologies of the sperm nucleus type and the acrosome shape of this species are a long arrow-like type and long cone-like shape, respectively. The sperm head of this species (external fertilization, dioecious and oviparous species) is partially modified from that of the primitive type, as seen in triploid Corbicula species (internal fertilization, hermaphrodite and ovoviparous species), reported by some authors. However, this species produces uniflagellate spermatozoa, unlike freshwater triploid hermaphroditic clams being possessed of partially modified biflagellate spermatozoa. Diploid C japonica is similar to those of other bivalves being possessed of a short midpiece containing four mitochondria surrounding the centrioles. The axoneme of the sperm tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. The axoneme of the sperm tail shows a 9+2 structure, and from uniflagellate sperm cross sectioned, in particular, wing-like axonernal lateral fins are observed, as seen in external fertilization fishes.

  • PDF

Ultrastructures of Germ Cells and the Accessory Cells During Spermatogenesis in Male Gomphina veneriformis (Bivalvia: Veneridae) on the East Sea of Korea

  • Chung, Ee-Yung;Chung, Chang-Ho;Kim, Jin-Hee;Park, Sung-Woo;Park, Kwan-Ha
    • The Korean Journal of Malacology
    • /
    • v.26 no.1
    • /
    • pp.51-62
    • /
    • 2010
  • The ultrastructures of germ cells and the accessory cells during spermatogenesis and mature sperm ultrastructure in male Gomphina veneriformis, which was collected on the coastal waters of Yangyang, East Sea of Korea, were investigated by transmission electron microscope observations. The morphology of the spermatozoon has a primitive type and is similar to those of other bivalves in that it contains a short midpiece with four mitochondria surrounding the centrioles. Accessory cells are observed to be connected to adjacent germ cells, they contain a large quantity of glycogen particles and lipid droplets in the cytoplasm. Therefore, it is assumed that they are involved in the supplying of the nutrients for germ cell development, while any phenomena associated with phagocytosis of undischarged, residual sperms by lysosomes in the cytoplasm of the accessory cells after spawning was not observed in this study. The morphologies of the sperm nucleus type and the acrosome shape of this species have a cylindrical and modified long cone shape, respectively. In particular, the axial filaments in the lumen of the acrosome, and subacrosomal granular materials are observed in the subacrosomal space between the anterior nuclear fossa and the beginning part of axial filaments in the acrosome. The spermatozoon is approximately $50-55{\mu}m$ in length including a long sperm nucleus (about $7.80{\mu}m$ in length), an acrosome (about $1.13{\mu}m$ in length) and tail flagellum ($40-45{\mu}m$). The axoneme of the sperm tail flagellum consists of nine pairs of microtubules at the periphery and a pair at the center. The axoneme of the sperm tail shows a 9+2 structure. Some charateristics of sperm morphology of this species in the family Veneridae are (1) acrosomal morphology, (2) the number of mitochondria in the midpiece of the sperm,. The axial filament appears in the acrosome as one of characteristics seen in several species of the family Veneridae in the subclass heterodonta, unlikely the subclass pteriomorphia containing axial rod instead of the axial filament. As some characteristics of the acrosome structures, the peripheral parts of two basal rings show electron opaque part (region), while the apex part of the acrosome shows electron lucent part (region). These charateristics belong to the family Veneridae in the subclass heterodonta, unlikely a characteristic of the subclass pteriomorphia showing all part of the acrosome being composed of electron opaque part (region). Therefore, it is easy to distinguish the families or the subclasses by the acrosome structures. The number of mitochondria in the midpiece of the sperm of this species are four, as one of common characteristics appeared in most species in the family Veneridae.

Spermiogenesis and Taxonomical Values of Sperm Ultrastructures in Male Crassostrea ariakensis (Fujita & Wakiya, 1929) (Pteroirmorphia: Ostreidae) in the Estuary of the Seomjin River, Korea

  • Son, Pal Won;Chung, Jae Seung;Kim, Jin Hee;Kim, Sung Han;Chung, Ee-Yung
    • Development and Reproduction
    • /
    • v.18 no.3
    • /
    • pp.179-186
    • /
    • 2014
  • Characteristics of the developmental stages of spermatids during spermiogenesis and phylogenetic classicfication of the species using sperm ultrastructures in male Crassostrea ariakensis were investigated by transmission electron microscope observations. The morphology of the spermatozoon of this species has a primitive type and is similar to those of Ostreidae. Ultrastructures of mature sperms are composed of broad, modified cap-shaped acrosomal vesicle and an axial rod in subacrosomal materials on an oval nucleus, four spherical mitochondria in the sperm midpiece, and satellite fibres which appear near the distal centriole. The axoneme of the sperm tail shows a 9+2 structure. Accordingly, the ultrastructural characteristics of mature sperm of C. ariakensis resemble to those of other investigated ostreids in Ostreidae in the subclass Pteriomorphia. In this study, particularly, two transverse bands (stripes) appear at the anterior region of the acrosomal vesicle of this species, unlike two or three transverse bands (stripes) in C. gigas. It is assumed that differences in this acrosomal substructure are associated with the inability of fertilization between the genus Crassostrea and other genus species in Ostreidae. Therefore, we can use sperm ultrastructures and morphologies in the resolution of taxonomic relationships within the Ostreidae in the subclass Pteriomorphia. These spermatozoa, which contain several ultrastructures such as acrosomal vesicle, an axial rod in the sperm head part and four mitochondria and satellite fibres in the sperm midpiece, belong to the family Ostreidae in the subclass Pteriomorphia.

Magnetic Orientations of Bull Sperm Separated into Head and Flagellum Treated by DTT or Heparin

  • Suga, D.;Shinjo, A.;Kurnianto, E.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-175
    • /
    • 2000
  • This paper describes the magnetic orientation of bull sperm separated into the head and the flagellum treated by DTT or heparin in a 5,400G static field. Semen samples collected from four bulls (Japanese Black) were mixed to the same sperm density. One percentage triton X-100 was used to extract the plasma membrane. The intact and demembranated sperm suspensions were treated with 20, 200, 2,000 mM DTT, 100, 1,000 or 10,000 units heparin solutions at $4^{\circ}C$ for 6 days. The decondensation of the sperm nuclei treated by DTT or heparin was examined by measuring the head area at 1, 3 and 6 days. After measuring the area, each sample was exposed to a 5,400G static magnetic field generated by Nd-Fe-B permanent magnets for 24 hours at room temperature. Results showed that the sperms were separated into the head and the flagellum through the DTT treatment. Almost of the separated heads showed that their long axis oriented perpendicularly to the magnetic lines of force, and most of the long axis perpendicularly oriented heads showed that their flat plane oriented perpendicularly in a 5,400G magnetic field. Also, the demembranation of the head tended to increase those perpendicular orientations, while those perpendicular orientations of the head declined with the decondensation of the sperm nuclei. These findings suggest that strong magnetic anisotropy for the perpendicular orientation of the long axis and the flat plane of the head occurs in the sperm nuclei in a 5,400G magnetic field. The separated flagellum showed lower parallel orientation, and the separated and demembranated flagellum showed parallel orientation to the magnetic lines of force in this magnetic field. These findings suggest that weak magnetic anisotropy of the parallel orientation of the flagellum occurs in the inside components in a 5,400G field.

Dynamics of spermatial nuclei in trichogyne of the red alga Bostrychia moritziana (Florideophyceae)

  • Shim, Eunyoung;Park, Hana;Im, Soo Hyun;Zuccarello, Giuseppe C.;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.35 no.4
    • /
    • pp.389-404
    • /
    • 2020
  • Red algal fertilization is unusual and offers a different model to the mechanism of intracellular transport of nuclei and polyspermy blocking. A female carpogonium (egg) undergoes plasmogamy with many spermatia (sperm) simultaneously at the receptive structure, trichogyne, which often contains numerous male nuclei. The pattern of selective transport of a male nucleus to the female nucleus, located in the cell body of the carpogonium, remain largely unknown. We tracked the movement of spermatial nuclei and cell organelles in the trichogyne after plasmogamy using time-lapse videography and fluorescent probes. The fertilization process of Bostrychia moritziana is composed of five distinctive stages: 1) gamete-gamete binding; 2) mitosis in the attached spermatia; 3) formation of a fertilization channel; 4) migration of spermatial nuclei into the trichogyne; and 5) cutting off of the trichogyne cytoplasm from the rest of the cell after karyogamy. Our results showed that actin microfilaments were involved in the above steps of fertilization, microtubules are involved only in spermatial mitosis. Time-lapse videography showed that the first ("primary") nucleus which entered to trichogyne moved quickly to the base of carpogonium and fused with the female nucleus. The transport of the primary male nucleus to the egg nucleus was complete before its second nucleus migrated into the trichogyne. Male nuclei from other spermatia stopped directional movement soon after the first one entered the carpogonial base and oscillated near where they entered trichogyne. The cytoplasm of the trichogyne was cut off at a narrow neck connecting the trichogyne and carpogonial base after gamete nuclear fusion but gamete binding and plasmogamy continued on the trichogyne. Spermatial organelles, including mitochondria, entered the trichogyne together with the nuclei but did not show any directional movement and remained close to where they entered. These results suggest that polyspermy blocking in B. moritziana is achieved by the selective and rapid transport of the first nucleus entered trichogyne and the rupture of the trichogyne after gamete karyogamy.

Acrosome Morphogenesis in Gerris paludum (Heteroptera) (소금쟁이의 尖體形成)

  • Lee, Young-Hwan;Lee, Chang-Eon
    • The Korean Journal of Zoology
    • /
    • v.24 no.2
    • /
    • pp.65-75
    • /
    • 1981
  • The formation of the acrosome during spermatogenesis in Gerris paludum was studied. The Golgi bodies are dispersed randomly in the cytoplasm at the early stage of the spermatocyte and get together to form several group of many bodies, and then they are equally divided into the spermatids by the meiotic divisions. The acroblast first appears in the form of a vesicle and soon an acrosomal granule is differentiated within it. The acroblast is separated from the acrosomal granule at the posterior of the nucleus and is finally sloughed off along the tail filament. The acrosome, after moving to the side of the nucleus opposite the mitochondrial derivatives, differentiates into two zones. The two basal bodies and the differentiated tip originate from the sheath. The basal bodies appear at the proximal part of the sheath simply in contact with the core on one side. During elongation and and narrowing of the acrosomes of the spermatids, they surround the one side at the base of the acrosome and finally all the other are immediately adjacent to the nucleus. The differentiated tip continues to the sheath at the anterior of the cores and is elongated prior to the two basal bodies. They appear to be contiguous twin-tubes, not a single granule in the later stage of the spermatids, and a group of the basal bodies in the sperm bundle.

  • PDF