• 제목/요약/키워드: Spent nuclear fuel management

검색결과 129건 처리시간 0.021초

The relationship between public acceptance of nuclear power generation and spent nuclear fuel reuse: Implications for promotion of spent nuclear fuel reuse and public engagement

  • Roh, Seungkook;Kim, Dongwook
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2062-2066
    • /
    • 2022
  • Nuclear energy sources are indispensable in cost effectively achieving carbon neutral economy, where public opinion is critical to adoption as the consequences of nuclear accident can be catastrophic. In this context, discussion on spent nuclear fuel is a prerequisite to expanding nuclear energy, as it leads to the issue of radioactive waste disposal. Given the dearth of study on spent nuclear fuel public acceptance, we use text mining and big data analysis on the news article and public comments data on Naver news portal to identify the Korean public opinion on spent nuclear fuel. We identify that the Korean public is more interested in the nuclear energy policy than spent nuclear fuel itself and that the alternative energy sources affect the position towards spent nuclear fuel. We recommend relating spent nuclear fuel issue with nuclear energy policy and environmental issues of alternative energy sources to further promote spent nuclear fuel.

iKSNF, the Control Tower for the R&D Program of SNF Storage and Disposal

  • Kim, Kyungsu
    • 방사성폐기물학회지
    • /
    • 제20권2호
    • /
    • pp.255-258
    • /
    • 2022
  • Three government bodies, that is, the Ministry of Science and ICT (MSIT), Ministry of Trade, Industry, and Energy (MOTIE), and Nuclear Safety and Security (NSSC), jointly established the Institute for Korea Spent Nuclear Fuel (iKSNF) in December 2020 to secure the management technologies for spent nuclear fuel (SNF). The objective of iKSNF is to successfully conduct the long-term research and development program of the 「Development of Core Technologies to Ensure Safety of Spent Nuclear Fuel Storage and Disposal System」. Our program, known as the first multi-ministry program in the nuclear field of Korea, mainly focuses on developing core technologies required for the long-term management of SNF, including those for safe storage and deep geological disposal of SNF. The program comprises three subprograms and seven key projects covering the storage, disposal, and regulatory sectors of SNF management. Our program will last from 2021 through 2029, with a budget of approximately four billion USD sponsored by MSIT, MOTIE, and NSSC.

Spent fuel characterization analysis using various nuclear data libraries

  • Calic, Dusan;Kromar, Marjan
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3260-3271
    • /
    • 2022
  • Experience shows that the solution to waste management in any national programme is lengthy and burdened with uncertainties. There are several uncertainties that contribute to the costs associated with spent fuel management. In this work, we have analysed the impact of the current nuclear data on the isotopic composition of the spent fuel and consequently their influence on the main spent fuel observables such as decay heat, activity, neutron multiplication factor, and neutron and photon source terms. Nuclear libraries based on the most general nuclear data ENDF/B-VII.0, ENDF/B-VII.1, ENDF/B-VIII.0 and JEFF-3.3 are considered. A typical NPP Krško fuel assembly is analysed using the Monte Carlo code Serpent 2. The analysis considers burnup of up to 60 GWd/tU and cooling times of up to 100 years. The comparison of results showed significant differences, which should be taken into account when selecting the library and evaluating the uncertainty in determining the characteristics of the spent fuel.

Review of Aging Management for Concrete Silo Dry Storage Systems

  • Donghee Lee;Sunghwan Chung;Yongdeog Kim;Taehyung Na
    • 방사성폐기물학회지
    • /
    • 제21권4호
    • /
    • pp.531-541
    • /
    • 2023
  • The Wolsong Nuclear Power Plant (NPP) operates an on-site spent fuel dry storage facility using concrete silo and vertical module systems. This facility must be safely maintained until the spent nuclear fuel (SNF) is transferred to an external interim or final disposal facility, aligning with national policies on spent nuclear fuel management. The concrete silo system, operational since 1992, requires an aging management review for its long-term operation and potential license renewal. This involves comparing aging management programs of different dry storage systems against the U.S. NRC's guidelines for license renewal of spent nuclear fuel dry storage facilities and the U.S. DOE's program for long-term storage. Based on this comparison, a specific aging management program for the silo system was developed. Furthermore, the facility's current practices-periodic checks of surface dose rate, contamination, weld integrity, leakage, surface and groundwater, cumulative dose, and concrete structure-were evaluated for their suitability in managing the silo system's aging. Based on this review, several improvements were proposed.

The information system concept for thermal monitoring of a spent nuclear fuel storage container

  • Svitlana Alyokhina
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3898-3906
    • /
    • 2023
  • The paper notes that the most common way of handling spent nuclear fuel (SNF) of power reactors is its temporary long-term dry storage. At the same time, the operation of the dry spent fuel storage facilities almost never use the modern capabilities of information systems in safety control and collecting information for the next studies under implementation of aging management programs. The author proposes a structure of an information system that can be implemented in a dry spent fuel storage facility with ventilated storage containers. To control the thermal component of spent fuel storage safety, a database structure has been developed, which contains 5 tables. An algorithm for monitoring the thermal state of spent fuel was created for the proposed information system, which is based on the comparison of measured and forecast values of the safety criterion, in which the level of heating the ventilation air temperature was chosen. Predictive values of the safety criterion are obtained on the basis of previously published studies. The proposed algorithm is an implementation of the information function of the system. The proposed information system can be used for effective thermal monitoring and collecting information for the next studies under the implementation of aging management programs for spent fuel storage equipment, permanent control of spent fuel storage safety, staff training, etc.

Assessing the Potential of Small Modular Reactors (SMRs) in Spent Nuclear Fuel Management: A Review of the Generation IV Reactor Progress

  • Hong June Park;Sun Young Chang;Kyung Su Kim;Pascal Claude Leverd;Joo Hyun Moon;Jong-Il Yun
    • 방사성폐기물학회지
    • /
    • 제21권4호
    • /
    • pp.571-576
    • /
    • 2023
  • The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.

MANAGING SPENT NUCLEAR FUEL FROM NONPROLIFERATION, SECURITY AND ENVIRONMENTAL PERSPECTIVES

  • Choi, Jor-Shan
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.231-236
    • /
    • 2010
  • The growth in global energy demand and the increased recognition of the impacts of carbon dioxide emissions from fossil fuel plants have aroused a renewed interest on nuclear energy. Many countries are looking afresh at building more nuclear power stations to deal with the twin problems of global warming and the need for more generating capacity. Many in the nuclear community are also anticipating a significant growth of new nuclear generation in the coming decades. If there is a nuclear renaissance, will the expansion of nuclear power be compatible with global non-proliferation and security? or will it add to the environmental burden from the large inventory of spent nuclear fuel already produced in existing nuclear power reactors? We learn from past peaceful nuclear activities that significant concerns associated with nuclear proliferation and spent-fuel management have resulted in a decrease in public acceptance for nuclear power in many countries. The terrorist attack in the United States (US) on September 11, 2001 also raised concern for security and worry that nuclear materials may fall into the wrong hands. As we increase the use of nuclear power, we must simultaneously reduce the proliferation, security and environmental risks in managing spent-fuel below where they are today.

Managing the Back-end of the Nuclear Fuel Cycle: Lessons for New and Emerging Nuclear Power Users From the United States, South Korea and Taiwan

  • Newman, Andrew
    • 방사성폐기물학회지
    • /
    • 제19권4호
    • /
    • pp.435-446
    • /
    • 2021
  • This article examines the consequences of a significant spent fuel management decision or event in the United States, South Korea and Taiwan. For the United States, it is the financial impact of the Department of Energy's inability to take possession of spent fuel from commercial nuclear power companies beginning in 1998 as directed by Congress. For South Korea, it is the potential financial and socioeconomic impact of the successful construction, licensing and operation of a low and intermediate level waste disposal facility on the siting of a spent fuel/high level waste repository. For Taiwan, it is the operational impact of the Kuosheng 1 reactor running out of space in its spent fuel pool. From these, it draws six broad lessons other countries new to, or preparing for, nuclear energy production might take from these experiences. These include conservative planning, treating the back-end of the fuel cycle holistically and building trust through a step-by-step approach to waste disposal.

CONSIDERATIONS REGARDING ROK SPENT NUCLEAR FUEL MANAGEMENT OPTIONS

  • Braun, Chaim;Forrest, Robert
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.427-438
    • /
    • 2013
  • In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U.S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U.S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R&D project to be conducted by U.S. and ROK scientists. One leading to the development of a demonstration centralized away-fromreactors spent fuel storage facility. The other involve further R&D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper.

Challenges of implementing the policy and strategy for management of radioactive waste and nuclear spent fuel in Indonesia

  • Wisnubroto, D.S.;Zamroni, H.;Sumarbagiono, R.;Nurliati, G.
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.549-561
    • /
    • 2021
  • Indonesia has policies and strategies for the management of radioactive waste and spent nuclear fuel that arises from the use of nuclear research and development facilities, including three research reactors, and the use of radioisotopes in medicine and industries. The Indonesian government has provided extensive facilities such as an independent regulatory organization (BAPETEN) and a centralized radioactive waste management organization (CRWT-BATAN). Further, the presence of regulations and several international conventions guarantee the protection of the public from all risks due to handling radioactive waste and spent nuclear fuel. However, the sustainability of radioactive waste management in the future faces various challenges, such as disposal issues related to not only to site selection but also financing of radioactive waste management. Likewise, the problem of transportation persists; as an archipelago country, Indonesia still struggles to manage the infrastructure required for the transport of radioactive materials. The waste from the production of the radioisotopes, especially from the production of 99Mo, requires special attention because BATAN has never handled it. Indonesia should also resolve the management of NORM from various activities. In Indonesia, the definition of radioactive waste does not include NORM. Therefore, the management of this waste needs revision and improvement on the regulations, infrastructure, and technology.