• 제목/요약/키워드: Spent nuclear fuel (SNF)

검색결과 64건 처리시간 0.027초

국내 사용후핵연료 현황 분석 (Projection and Burnup Trends of Spent Nuclear Fuel in Korea)

  • 조동건;최종원;이희환
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.261-267
    • /
    • 2004
  • 처분시스템 설계 시 기초 자료로 사용되는 국내 사용후핵연료의 발생량, 특징 및 연소이력 등의 현재 및 향후 현황을 파악하였다. 2055년까지 PWR 및 CANDU 사용후핵연료 발생량은 각각 20,500 및 14,800MTU로 나타났다.$17{\times}17$ 핵연료 집합체의 사용후핵연료 발생량비율은 2003년 기준으로 전체대비 60%를 점유하는 것으로 나타났으며, 2012년 이후부터는 .$16{\times}16$ KSFA 사용후핵연료 발생량이 .$17{\times}17$ 핵연료를 능가하기 시작하여 최종시점인 2055년에는 70% 정도를 점유할 것으로 보인다. 사용후핵연료의 평균 연소도는 90년대 후반에는 36GWD/MUT 정도, 2000년대 초반에는 40GWD/MTU를 나타냈으며, 2000년대 중ㆍ후반부터는 45GWD/MTU를 초과할 것으로 보인다. 따라서, 현재는 1997년에 선정한 제원을 기준 핵연료 제원으로 사용하되, 2010년을 기점으로 기준핵연료를 .$16{\times}16$ KSFA 4.5w/o, 55GWD/MTU로 반영하는 것이 타당해 보인다.

  • PDF

Spent Nuclear Fuel Safety Evaluation Methodology (SSEM) for Storage and Transportation

  • Kim, Y.K.;Noh, J. S.;Lee, S.K.;Kim, T.W.
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 추계학술논문요약집
    • /
    • pp.57-58
    • /
    • 2017
  • New approach to achieve the safety goals in transportation and dry storage of SNF, so called SSEM has been proposed. The main concept of the SSEM is that it simplifies the reviewing processes of each campaign of the transportation or storage of SNF with standard format. This SSEM could be considered as a model case for assuring public that the SNF be managed safely.

  • PDF

Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules

  • Shama, Ahmed;Rochman, Dimitri;Pudollek, Susanne;Caruso, Stefano;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2816-2829
    • /
    • 2021
  • Decay heat residuals of spent nuclear fuel (SNF), i.e., the differences between calculations and measurements, were obtained previously for various spent fuel assemblies (SFA) using the Polaris module of the SCALE code system. In this paper, we compare decay heat residuals to their uncertainties, focusing on four PWRs and four BWRs. Uncertainties in nuclear data and model inputs are propagated stochastically through calculations using the SCALE/Sampler super-sequence. Total uncertainties could not explain the residuals of two SFAs measured at GE-Morris. The combined z-scores for all SFAs measured at the Clab facility could explain the resulting deviations. Nuclear-data-related uncertainties contribute more in the high burnup SFAs. Design and operational uncertainties tend to contribute more to the total uncertainties. Assembly burnup is a relevant variable as it correlates significantly with the SNF decay heat. Additionally, burnup uncertainty is a major contributor to decay heat uncertainty, and assumptions relating to these uncertainties are crucial. Propagation of nuclear data and design and operational uncertainties shows that the analyzed assemblies respond similarly with high correlation. The calculated decay heats are highly correlated in the PWRs and BWRs, whereas lower correlations were observed between decay heats of SFAs that differ in their burnups.

PBIS: A Pre-Batched Inspection Strategy for spent nuclear fuel inspection robot

  • Bongsub Song;Jongwon Park;Dongwon Yun
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4695-4702
    • /
    • 2023
  • Nuclear power plants play a pivotal role in the global energy infrastructure, fulfilling a substantial share of the world's energy requirements in a sustainable way. The management of these facilities, especially the handling of spent nuclear fuel (SNF), necessitates meticulous inspections to guarantee operational safety and efficiency. However, the prevailing inspection methodologies lean heavily on human operators, which presents challenges due to the potential hazards of the SNF environment. This study introduces the design of a novel Pre-Batched Inspection Strategy (PBIS) that integrates robotic automation and image processing techniques to bolster the inspection process. This methodology deploys robotics to undertake tasks that could be perilous or time-intensive for humans, while image processing techniques are used for precise identification of SNF targets and regulating the robotic system. The implementation of PBIS holds considerable promise in minimizing inspection time and enhancing worker safety. This paper elaborates on the structure, capabilities, and application of PBIS, underlining its potential implications for the future of nuclear energy inspections.

Parametric study on the structural response of a high burnup spent nuclear fuel rod under drop impact considering post-irradiated fuel conditions

  • Almomani, Belal;Kim, Seyeon;Jang, Dongchan;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.1079-1092
    • /
    • 2020
  • A parametric study of several parameters relevant to design safety on the spent nuclear fuel (SNF) rod response under a drop accident is presented. In the view of the complexity of interactions between the independent safety-related parameters, a factorial design of experiment is employed as an efficient method to investigate the main effects and the interactions between them. A detailed single full-length fuel rod is used with consideration of post-irradiated fuel conditions under horizontal and vertical free-drops onto an unyielding surface using finite-element analysis. Critical drop heights and critical g-loads that yield the threshold plastic strain in the cladding are numerically estimated to evaluate the fuel rod structural resistance to impact load. The combinatory effects of four uncertain parameters (pellet-cladding interfacial bonding, material properties, spacer grid stiffness, rod internal pressure) and the interactions between them on the fuel rod response are investigated. The principal finding of this research showed that the effects of above-mentioned parameters on the load-carrying capacity of fuel rod are significantly different. This study could help to prioritize the importance of data in managing and studying the structural integrity of the SNF.

Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport

  • JaeHoon Lim;Woo-seok Choi
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4030-4048
    • /
    • 2022
  • In this study, road transportation tests were conducted with surrogate fuel assemblies under normal conditions of transport to evaluate the vibration and shock load characteristics of spent nuclear fuel (SNF). The overall test data analysis was conducted based on the measured acceleration and strain data obtained from the speed bump, lane-change, deceleration, obstacle avoidance, and circular tests. Furthermore, representative shock response spectrums and power spectral densities of each test mode were acquired. Amplification or attenuation characteristics were investigated according to the load transfer path. The load attenuated significantly as it transferred from the trailer to the cask. By contrast, the load amplified as it transferred from the cask to the surrogate SNF assembly. The fuel loading location on the cask disk assembly did not exhibit a significant influence on the strain measured from the fuel rods. The principal strain was in the vertical direction, and relatively large strain values were obtained in spans with large spacing between spacer grids. The influence of the lateral location of fuel rods was also investigated. The fuel rods located at the side exhibited relatively large strain values than those located at the center. Based on the strain data obtained from the test results, a hypothetical road transportation scenario was established. A fatigue evaluation of the SNF rod was performed based on this scenario. The evaluation results indicate that no fatigue damage occurred on the fuel rods.

파이로공정 시설 개념설계를 위한 기준 사용후핵연료 선정 (Reference Spent Nuclear Fuel for Pyroprocessing Facility Design)

  • 조동건;윤석균;최희주;최종원;고원일
    • 방사성폐기물학회지
    • /
    • 제6권3호
    • /
    • pp.225-232
    • /
    • 2008
  • 제3차 전력수급기본계획에 근거하여 현재 운영중이거나 계획중인 원자력발전소에서 발생할 사용후핵연료의 양과 특성을 추정하였다. 본 연구에서 고려된 대상 특성은 핵연료집합체에 대한 제원, 핵연료봉 배열, 무게, $^{235}U$ 초기 농축도 및 방출연소도이다. 이들은 파이로공정 시설을 설계하는데 필수적인 것이다. 2077년말까지 가압경수로 사용후핵연료의 예상발생량은 약 23,000 tU이 될 것으로 보인다. $^{235}U$ 초기 농축도 4.5 wt.% 이하를 갖는 사용후핵연료의 비율은 전체 발생량의 약 95%를 차지할 것이며, 16$\times$16 배열을 갖는 핵연료집합체는 74%를 차지할 것 같다. 현재 사용후핵연료의 평균연소도는 45 GWd/tU인데 반해, 2010년대 중 후반 이후 발생할 사용후 핵연료의 평균연소도는 55 GWd/tU이 될 것 같다. 이상의 결과에 따라 파이로공정 시설의 설계를 위한 기준 사용후핵연료를 도출하였다. 예상 사용후핵연료는 21.4 cm $\times$ 21.4 cm의 단면적, 453 cm의 길이, 672 kg의 질량, 4.5 wt.%의 $^{235}U$ 초기 농축도 및 55 GWd/tU의 방출연소도를 갖는 16$\times$16 한국표준형연료가 타당할 것으로 판단된다.

  • PDF

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Change in radiation characteristics outside the SNF storage container as an indicator of fuel rod cladding destruction

  • Rudychev, V.G.;Azarenkov, N.A.;Girka, I.O.;Rudychev, Y.V.
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3704-3710
    • /
    • 2021
  • The characteristics of the external radiation on the surface of the casks for spent nuclear fuel (SNF) storage by dry method are investigated for the case when the spatial distribution of SNF in the basket changes due to the destruction of the fuel rod claddings. The surface areas are determined, where the changes in fluxes of neutrons, produced by 244Cm actinide, and γ-quanta, produced by long-lived isotopes, are maximum in the result of the decrease in the height of the SNF area. Concrete (VSC-24) and metal (SC-21) casks are considered as examples. The procedure of periodic measurement of the dose rate of neutrons or γ-quanta at the specified points of the cask surface is proposed for identifying the fuel rod cladding destruction. Under normal operation, the decrease in the dose rate produced by neutrons as the function of SNF storage duration is determined by the half-life of 244Cm, and for γ-quanta - by the half-lives of long-lived SNF isotopes. Consequently, a stepwise change in the dose rate of neutrons or γ-quanta, detected by the measurements, as compared to the previous one, would indicate the destruction of the fuel rod claddings.

Validation of nuclide depletion capabilities in Monte Carlo code MCS

  • Ebiwonjumi, Bamidele;Lee, Hyunsuk;Kim, Wonkyeong;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1907-1916
    • /
    • 2020
  • In this work, the depletion capability implemented in Monte Carlo code MCS is investigated to predict the isotopic compositions of spent nuclear fuel (SNF). By comparison of MCS calculation results to post irradiation examination (PIE) data obtained from one pressurized water reactor (PWR), the validation of this capability is conducted. The depletion analysis is performed with the ENDF/B-VII.1 library and a fuel assembly model. The transmutation equation is solved by the Chebyshev Rational Approximation Method (CRAM) with a depletion chain of 3820 isotopes. 18 actinides and 19 fission products are analyzed in 14 SNF samples. The effect of statistical uncertainties on the calculated number densities is discussed. On average, most of the actinides and fission products analyzed are predicted within ±6% of the experiment. MCS depletion results are also compared to other depletion codes based on publicly reported information in literature. The code-to-code analysis shows comparable accuracy. Overall, it is demonstrated that the depletion capability in MCS can be reliably applied in the prediction of SNF isotopic inventory.