• Title/Summary/Keyword: Spent fuel Management

Search Result 156, Processing Time 0.032 seconds

A Method to Estimate the Burnup Using Initial Enrichment, Cooling Time, Total Neutron Source Intensity and Gamma Source Activities in Spent Fuels

  • Sohee Cha;Kwangheon Park;Mun-Oh Kim;Jae-Hun Ko;Jin-Hyun Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.303-313
    • /
    • 2023
  • Spent fuels (SFs) are stored in a storage pool after discharge from nuclear power plants. They can be transferred to for the further processes such as dry storage sites, processing plants, or disposal sites. One of important measures of SF is the burnup. Since the radioactivity of SF is strongly dependent on its burnup, the burnup of SF should be well estimated for the safe management, storage, and final disposal. Published papers about the methodology for the burnup estimation from the known activities of important radioactive sources are somewhat rare. In this study, we analyzed the dependency of the burnup on the important radiation source activities using ORIGEN-ARP, and suggested simple correlations that relate the burnup and the important source activities directly. A burnup estimation equation is suggested for PWR fuels relating burnup with total neutron source intensity (TNSI), initial enrichment, and cooling time. And three burnup estimation equations for major gamma sources, 137Cs, 134Cs, and 154Eu are also suggested.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

Perception Survey Study on High-level Radioactive Waste: Targeting Local Residents in Gijang-gun, Busan (고준위방사성폐기물에 대한 인식 조사 연구: 부산 기장군 지역 주민을 대상으로)

  • Yeon-Hee Kang;Sung Hee Yang;Yong In Cho;Jung-Hoon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.947-955
    • /
    • 2023
  • This study was conducted to investigate the awareness of spent nuclear fuel among residents in nuclear power plant areas and use it as basic data for establishing a disposal facility for high-level radioactive waste. 204 questionnaires collected online were analyzed using SPSS Window Ver 28.0. To verify differences between groups, t-test and one-way ANOVA were performed. And correlation analysis was conducted to confirm the relationship between variables. As a result, first, risk perception regarding nuclear-related accidents showed statistically significant differences depending on gender and educational level. The position on the construction of a permanent disposal facility for spent nuclear fuel showed a statistically significant difference depending on gender, education, and age, and the perception of the importance of each evaluation standard for establishing a spent nuclear fuel management plan showed a statistically significant difference depending on education and age. In terms of trust in information-providing institutions, trust in the National Assembly was found to be the lowest. Second, the results of the correlation analysis between variables showed that local residents are aware that an alternative to the current disposal of spent nuclear fuel is needed, and that financial support for the construction of a permanent disposal facility is needed. Therefore, in order to build a high-level radioactive waste disposal site, it is believed that it is necessary to increase trust in the government, collect opinions from local residents, and provide economic support.

RADIATION MONITORING SYSTEM FOR ADVANCED SPENT FUEL CONDITIONING PROCESS FACITLITY

  • Kook Dong-Hak;Choung Won-Myung;Lee Eun-Pyo;You Gil-Sung;Cho Il-Je;Kwon Kie-Chan;Lee Won-Kyoung;Ku Jeoung-Hoe
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.149-155
    • /
    • 2005
  • The $ACP^1$ is under development for effective management of spent fuel by converting $UO_2$ into U-metal. For demonstration of this process, $\alpha-\gamma$ type new hotcell was built in the $IMEF^2$ basement. To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hotcell and service area at back of it. This system consists of 7 parts; Area Monitor for $\gamma$-ray, Room Air Monitor for particulate and iodine in both area, Hotcell Monitor for hotcell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  • PDF

Current Status of the Radioactive Waste Management Program in Korea

  • Park, H-S;Hwang, Y-S;Kang, C-H
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.140-142
    • /
    • 2004
  • Since the April of 1978, Korea has strongly relied on the nuclear energy for electricity generation. As of today, eighteen nuclear power plants are in operation and ten are to be inaugurated by 2015. The installed nuclear capacity is 15, 716 MW as of the end of 2002, representing 29.3% of the nation's total installed capacity. The nuclear share in electricity remains around 38.9 at the end of 2002, reaching at the level of 119 billion kWh's. New power reactors, KSNP's (Korea Standard Nuclear Power Plant) are fully based on the domestic technologies. More advanced reactors such as KNGR (Korea Next Generation Reactor) will be commercialized soon. Even though the front end nuclear cycle enjoys one of the best positions in the world, there have been some chronical problems in the back end fuel cycle. That's the one of the reason why we need more active R&D programs in Korea and active international and regional cooperation in this area. The everlasting NIMBY problem hinders the implementation of the nation's radioactive waste management program. We expect that the storage capacity for the LILW(Low and Intermediate Level radioactive Waste) will be dried out soon. The situation for the spent fuel storage is also not so favorable too. The storage pools for spent fuel are being filled rapidly so that in 2008, some AR pools cannot accommodate any more new spent nuclear fuels. The Korean Government in strong association with utilities and national academic and R&D institutes have tried its best effort to secure the site for a LILW repository and a AFR site. Finally, one local community, Buan in Jeonbook Province, submitted the petition for the site. At the end of the last July, the Government announced that the Wido, a small island in Buan, is suitable for the national complex site. The special force team headed by Dr IS Chang, president of KAERI teamed with Government officials and many prominent scholars and journalists agreed that by the evidences from the preliminary site investigation, they could not find any reason for rejecting the local community's offer.

  • PDF

Spent Fuel and Waste Management Activities For the Cleanout of the 105F Fuel Storage Basin at HANFORD

  • Morton, Mark-R.;Rodovsky, Tomas J.;Lee, Sun-Kee
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2007.05a
    • /
    • pp.190-191
    • /
    • 2007
  • Cleanout of the F Reactor Fuel Storage Basin (FSB) is an element of the FSB decontamination and decommissioning (D&D) and is required to complete interim safe storage (ISS) of the F Reactor. Following reactor shutdown and in preparation for a deactivation layaway action in 1970, the water level in the FReactor FSB was reduced to approximately 0.6 m (2 ft) over t]to floor. Basin components and other miscellaneous items were left or placed in the FSB. The item placement was performed with a sense of finality, and no attempt was made to place the items in an orderly manner. The F Reactor FSB was then filled to grade level with 6(20of local surface material (essentially a fine sand). The reactor FSB backfill cleanout has the potential of having to remove spent nuclear fuel (SNF) that may have been left unintentionally. Based on previous cleanout of six water-filled FSBs with similar designs (i.e., the B, C, D, and DR FSBs in the 1980's), it was estimated that up to five SNF elements could be discovered in the F FSB (I). In reality about 17 full SNF elements were found in the excavation. This paper covers the technical and programmatic challenges of performing this decommissioning effort with some of the controls used for SNF management. The paper also will highlight how many various technologies were married into a complete package to address the issue at hand and show how no one tools could complete the job, but combined, good progress is being made.

  • PDF

Preliminary Review on Function, Needs and Approach of Underground Research Laboratory for Deep Geological Disposal of Spent Nuclear Fuel in Korea (사용후핵연료 심층처분을 위한 지하연구시설(URL)의 필요성 및 접근 방안)

  • Bae, Dae-Seok;Koh, Yong-Kwon;Lee, Sang-Jin;Kim, Hyunjoo;Choi, Byong-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.157-178
    • /
    • 2013
  • This study gives a conceptual and basic direction to develop a URL (underground research laboratory) program for establishing the performance and safety of a deep geological disposal system in Korea. The concept of deep geological disposal is one of the preferred methodologies for the final disposal of spent nuclear fuel (SNF). Advanced countries with radioactive waste disposal have developed their own disposal concepts reasonable to their social and environmental conditions and applied to their commercial projects. Deep geological disposal system is a multi-barrier system generally consisting of an engineered barrier and natural barrier. A disposal facility and its host environment can be relied on a necessary containment and isolation over timescales envisaged as several to tens of thousands of years. A disposal system is not allowed in the commercial stage of the disposal program without a validation and demonstration of the performance and safety of the system. All issues confirming performance and safety of a disposal system include investigation, analysis, assessment, design, construction, operation and closure from planning to closure of the deep geological repository. Advanced countries perform RD&D (research, development & demonstration) programs to validate the performance and safety of a disposal system using a URL facility located at the preferred rock area within their own territories. The results and processes from the URL program contribute to construct technical criteria and guidelines for site selection as well as suitability and safety assessment of the final disposal site. Furthermore, the URL program also plays a decisive role in promoting scientific understanding of the deep geological disposal system for stakeholders, such as the public, regulator, and experts.