• Title/Summary/Keyword: Spent Mushroom Substrate

Search Result 70, Processing Time 0.023 seconds

Feeding rate and growth rate of earthworm(Oligochaeta : Eisenia fetida) population on the spent substrate of the agaric-mushroom cultivation (느타리버섯 폐배지에 대한 줄지렁이(Eisenia fetida) 개체군의 섭식률 및 생장률)

  • Bae, Yun-Hwan;Yang, Yong-Un
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.45-53
    • /
    • 2010
  • Feeding rate and growth rate of earthworm population on the variously pretreated spent materials of the agaric-mushroom cultivation were investigated. When the spent mushroom substrates with different aging periods were supplied to earthworm, feeding rate and growth rate of earthworm population on spent mushroom substrates aged less than 10 days were higher than that on spent mushroom substrates aged more than 20 days. Feeding rate and growth rate were not increased when the spent mushroom substrate mixed with vermicasts or nitrogenous fertilizer was supplied. Feeding rate and growth rate on the ground mushroom substrate were higher than that on the non-ground mushroom substrate. Especially when the ground mushroom substrate was mixed with rice bran and supplied to earthworms, growth rate was much higher than that on the non-ground spent mushroom substrate; it increased 1.85 times.

Industrial utilization of spent mushroom substrate (버섯 수확 후 배지의 산업적 활용)

  • Kang, Hee-Wan
    • Journal of Mushroom
    • /
    • v.17 no.3
    • /
    • pp.85-92
    • /
    • 2019
  • Over a million tons of spent mushroom substrate (SMS) are generated as by-products of mushroom cultivation every year in Korea. Disposal of SMS by mushroom farmers is difficult, therefore, recycling solutions that do not harm the environment are necessary. SMS consists of mushroom mycelia and residues of fruiting bodies, containing a variety of bioactive substances, such as extracellular enzymes, antimicrobial compounds, and secondary metabolites. This paper reviews utility of SMS for bioremediation, controlling plant disease, and production of lignocellulytic enzymes, organic fertilizer, and animal feed.

Upcycling the Spent Mushroom Substrate of the Grey Oyster Mushroom Pleurotus pulmonarius as a Source of Lignocellulolytic Enzymes for Palm Oil Mill Effluent Hydrolysis

  • Yunan, Nurul Anisa Mat;Shin, Tan Yee;Sabaratnam, Vikineswary
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.823-832
    • /
    • 2021
  • Mushroom cultivation along with the palm oil industry in Malaysia have contributed to large volumes of accumulated lignocellulosic residues that cause serious environmental pollution when these agroresidues are burned. In this study, we illustrated the utilization of lignocellulolytic enzymes from the spent mushroom substrate of Pleurotus pulmonarius for the hydrolysis of palm oil mill effluent (POME). The hydrolysate was used for the production of biohydrogen gas and enzyme assays were carried out to determine the productivities/activities of lignin peroxidase, laccase, xylanase, endoglucanase and β-glucosidase in spent mushroom substrate. Further, the enzyme cocktails were concentrated for the hydrolysis of POME. Central composite design of response surface methodology was performed to examine the effects of enzyme loading, incubation time and pH on the reducing sugar yield. Productivities of the enzymes for xylanase, laccase, endoglucanase, lignin peroxidase and β-glucosidase were 2.3, 4.1, 14.6, 214.1, and 915.4 U g-1, respectively. A maximum of 3.75 g/lof reducing sugar was obtained under optimized conditions of 15 h incubation time with 10% enzyme loading (v/v) at a pH of 4.8, which was consistent with the predicted reducing sugar concentration (3.76 g/l). The biohydrogen cumulative volume (302.78 ml H2.L-1 POME) and 83.52% biohydrogen gas were recorded using batch fermentation which indicated that the enzymes of spent mushroom substrate can be utilized for hydrolysis of POME.

Evaluate spent mushroom substrate for raising bed soil of rice (버섯 수확 후 배지의 수도용 상토로써의 활용가능성 평가)

  • Oh, Tae-Seok;Park, Youn Jin;Kim, Tae-Kwon;Kim, Chang-Ho;Cho, Yong-Koo;Kim, Seong-Min;Shin, Dong-Il;Koo, Han-Mo;Jang, Myoung-Jun
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.250-255
    • /
    • 2015
  • In this study spent mushroom substrate has ingredient raising rice bed soil. spent mushroom substrates are organic content is 60.72% were nitrogen - phosphoric acid - potassium is 1.39 - 0.89 - 0.81% of the chemical characteristics determine. Post-harvested mushroom substrates of the stabilization process, the temperature of the 20 days time progress in the pH of the rise and fall of temperature down were germination index also 77, as identified, Spent mushroom substrate bed soil for raising rice Ingredient to take advantage of the 20 days or more stabilization process needed to be investigated. Rice seed germination characteristic is in the common bed soil for raising rice ingredients manufactured control group and the comparison in spent mushroom substrate is 10% or less of a mixed experimental population of the germination rate is 82% was more than average days to germination and germination energy, even a statistical significant difference is or control group than good level was ok. Growth initial also spent mushroom substrate is 10% or less of a mixed experimental population of shoot dry matter (top) and grave less than control group higher as confirmed spent mushroom substrates are bed soil for raising rice ingredients are likely to take advantage of the high, as was the judge.

Application of spent oyster mushroom substrate for bag cultivation of Lentinula edodes (느타리버섯 수확후 배지를 이용한 표고 배지 개발)

  • Kim, Jeong-Han;Kang, Young-Ju;Baek, Il-Sun;Jeoung, Yun-Kyeoung;Lee, Yong-Seon;Lee, Young-Soon
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.70-73
    • /
    • 2018
  • To determine the optimum amount of spent oyster mushroom substrate (SOMS) for use in cultivation of Lentinula edodes, the chemical properties of the substrate and culture conditions of Lentinula edodes were investigated. Replacing 20-50% of a sawdust substrate with SOMS yielded a C/N ratio of 62-76. In case of substrates containing SOMS, the total nitrogen and phenolic contents of were higher, whereas fructose and organic acid contents were lower than those of the control substrate. Cultivation tests showed that the 3-cycle yield of 20% SOMS treatment was 286.7 g, similar to that of the control, while 50% SOMS treatment significantly decreased the yield. In conclusion, development of oak mushroom substrate using SOMS would recycle waste products and decrease material costs.

Suppressive Effect of Water Extract from Spent Mushroom Substrate of Pleurotus eryngii against Tomato Bacterial Wilt Disease (큰느타리 수확 후 배지 물 추출물의 토마토 풋마름병 억제)

  • Kwak, A-Min;Lee, Sang-Yeop;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.323-329
    • /
    • 2016
  • Water extract from spent mushroom substrate (WESMS) of Pleurotus eryngii suppressed bacterial wilt disease of tomato caused by Ralstonia solanacearum by 70% without any direct antibacterial activity against the pathogen. WESMS-treated tomato had increased contents of free phenolic compounds (increased by 3%) and total salicylic acid (increased by 75%), and significantly enhanced plant height, leaf number, and fresh weight compared to those of a water-treated tomato sample. These results suggest that the treatment of tomato with WESMS can suppress bacterial wilt disease by enhancing plant defense factors and overall plant health.

Yield, Nutrient Characteristics, Ruminal Solubility and Degradability of Spent Mushroom (Agaricus bisporus) Substrates for Ruminants

  • Kim, Y.I.;Cho, W.M.;Hong, S.K.;Oh, Y.K.;Kwak, W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1560-1568
    • /
    • 2011
  • This study was conducted to evaluate the yield, nutrient characteristics, ruminal solubility, degradability and disappearance of spent mushroom (Agaricus bisporus) substrates for ruminants. The annual yield of spent Agaricus bisporus substrates was measured to be about 210,000 tons (M/T) in South Korea. The surface soil-removed spent substrates had nutritional characteristics of high crude ash (375 g/kg) and Ca (32 g/kg), medium protein (134 g/kg CP), and high fiber (384 g/kg NDF on a DM basis). Compared with initial mushroom substrates, spent mushroom substrates had twice higher (p<0.0001) CP content and 22.0% lower (p<0.0001) NDF content on an organic matter basis. Compared with raw rice straw, spent rice straw had much higher (p<0.05) predicted ruminal degradabilities and disappearances of DM and CP and a little lower (p<0.05) predicted degradability and disappearance of NDF. In conclusion, the general feed-nutritional value of spent mushroom (Agaricus bisporus) substrates appeared to improve after cultivation of mushrooms.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Effect of Spent Mushroom Substrates of Hericium erinaceum on Plant Pathogens of Tomato (노루궁뎅이버섯 수확후 배지 추출물의 토마토에 발생하는 식물병원균에 대한 생육억제 효과)

  • Lee, Sang Yeob;Kang, Hee-Wan;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.43 no.3
    • /
    • pp.185-190
    • /
    • 2015
  • Water extract from spent mushroom substrate of Hericium erinaceus inhibited the mycelial growth of seven strain of tomato pathogenic fungi including Phytophthora capsici and the growth of Ralstonia solanacearum. Control efficacy of tomato bacterial wilt by treatment of 33.3% and 50% water extract from spent mushroom substrate of Hericium erinaceus was showed 58.3%, 83.3%, respectively.

Yield characteristics of Pleurotus ostreatus according to the use of spent mushroom substrate with high nitrogen content (질소원이 증진된 수확후배지를 이용한 느타리버섯 수량 특성)

  • Baek, Il-Sun;Kim, Jeong-Han;Lee, Yong-Seon;Shin, Bok-Eum;Lee, Yun-Hae;Lee, Young-Soon
    • Journal of Mushroom
    • /
    • v.16 no.4
    • /
    • pp.257-262
    • /
    • 2018
  • The aim of this study was to re-use spent mushroom substrate (SMS) with increased total nitrogen (T-N) and amino acid content and reduce the amount of cottonseed meal used as nutrient supplement in Pleurotus ostreatus cultivation. Bacteria used for improvement of the T-N content were GM20-4(Bacillus sp.) and Rhodobacter sphaeroides (RS). GM20-4 was isolated from the SMS of P. ostreatus and RS was obtained from Gwangjusi agricultural technology center. SMS in T1, T2, and T3 was reused as substrate after drying and the T-N content of dried SMS (D-SMS) was increased by 0.34% by treatment with the bacteria. T1 with 8% D-SMS and T2 with 18% D-SMS had higher rates of primordia formation compared with T3 and the control. The biological efficiency of the control and of treatment with 8%, 18%, and 26% D-SMS was 110%, 114%, 112%, and 79%, respectively. Considering the economic cost, yield, and biological efficiency, T2 with 18% D-SMS as the culture substrate for P. ostreatus was shown to be the most effective for cultivation.