• Title/Summary/Keyword: Spent Fuel

Search Result 1,136, Processing Time 0.031 seconds

Study on Decay Characteristics Change of Spent Fuel Materials by DUPIC Fuel Cycle (DUPIC핵연료주기에 의한 사용 후 경수로핵연료의 방사선적 특성변화 분석)

  • Choi, Jong-Won;Ko, Won-Il;Lee, Jae-Sol;Park, Hyun-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.27-39
    • /
    • 1996
  • The change in spent fuel characteristics by DUPIC fuel cycle(burnup of spent PWR fuel again in CANDU) is examined with time elapse since discharge. Major characteristics examined include isotopic concentration, radioactivity, decay heat radiotoxicity and radiation source-term of spent fuel material, which is existing in a type of spent PWR and DUPIC fuel. Behaviors of major nuclides contributing to such changes are also analyzed in terms of radionuclide concentration. From the analysis, the change in radionuclide concentration by DUPIC shows approximately 2% decrease in actinides concentration and 20% increase in fission products concentration. Radioactivity and decay heat of spent DUPIC fuel does not depend upon radionuclides concentrations, which is a unique in sence of general characteristics of spent fuel. In terms of gamma spectrum, spent DUPIC fuel shows lower values than that of spent PWR fuel by 40 to 50% in the range of $0.01{\sim}0.575$ MeV but much higher over 3.5MeV. Neutron Intensities of both spent fuels are mainly determined by $({\alpha},\;n)$ reaction and spontaneous fission reaction of actinides. Of them, especially, the spontaneous fission reaction Is a major neutron source-term, which causes that neutron intensities of spent DUPIC fuel $having{\sim}3.3$ times higher Cm-244 concentration are ${\sim}4$ times higher than that of spent PWR fuel.

  • PDF

CONSIDERATIONS REGARDING ROK SPENT NUCLEAR FUEL MANAGEMENT OPTIONS

  • Braun, Chaim;Forrest, Robert
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.427-438
    • /
    • 2013
  • In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U.S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U.S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R&D project to be conducted by U.S. and ROK scientists. One leading to the development of a demonstration centralized away-fromreactors spent fuel storage facility. The other involve further R&D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper.

Theoretical Estimation of the Impact Velocity during the PWR Spent Fuel Drop in Water Condition (경수로 사용후핵연료 수중 낙하 충돌 속도의 이론적 평가)

  • Kwon, Oh Joon;Park, Nam Gyu;Lee, Seong Ki;Kim, Jae Ik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • The spent fuel stored in the pool is vulnerable to external impacts, since the severe reactor conditions degrade the structural integrity of the fuel. Therefore an accident during shipping and handling should be considered. In an extreme case, the fuel assembly drop can be happened accidentally during handling the nuclear fuel in the spent fuel pool. The rod failure during such drop accident can be evaluated by calculating the impact force acting on the fuel assembly at the bottom of the spent fuel pool. The impact force can be evaluated with the impact velocity at the bottom of the spent fuel pool. Since fuel rods occupies most of weight and volume of a nuclear fuel assembly, the information of the rods are important to estimate the hydraulic resistance force. In this study, the hydraulic force acting on the $3{\times}3$ short rod bundle model during the drop accident is calculated, and the result is verified by comparing the numerical simulations. The methodology suggested by this study is expected to be useful for evaluating the integrity of the spent fuel.

Analysis of Remote Operation involved in Spent Nuclear Fuel Conditioning Process using its Virtual Mockup

  • Yoon, Ji-Sup;Kim, Sung-Hyun;Song, Tai-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.840-845
    • /
    • 2004
  • The remote operation of the Advanced Spent Fuel Conditioning Process (ACP) is analyzed by using the 3D graphic simulation tools. Since the spent nuclear fuel, which is a high radioactive material, is processed in the ACP, the ACP equipment is operated in intense radiation fields as well as in a high temperature. Thus, the equipment is operated in a remote manner and should be designed with consideration for the remote handling and maintenance. Also suitable remote handling technology needs to be developed along with the design of the process concepts. For this we developed a graphic simulator, which provides the capability of verifying the remote operability of the ACP without the fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in the real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time developing a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF

THE EFFECTS OF CREEP AND HYDRIDE ON SPENT FUEL INTEGRITY DURING INTERIM DRY STORAGE

  • Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.249-258
    • /
    • 2010
  • Recently, many utilities have considered interim dry storage of spent nuclear fuel as an option for increasing spent fuel storage capacity. Foreign nuclear regulatory committees have provided some regulatory and licensing requirements for relatively low- and medium-burned spent fuel with respect to the prevention of spent fuel degradation during transportation and interim dry storage. In the present study, the effect of cladding creep and hydride distribution on spent fuel degradation is reviewed and performance tests with high-burned Zircaloy-4 and advanced Zr alloy spent fuel are proposed to investigate the effect of burnup and cladding materials on the current regulatory and licensing requirements. Creep tests were also performed to investigate the effect of temperature and tensile hoop stress on hydride reorientation and subsequently to examine the temperature and stress limits against cladding material failure. It is found that the spent fuel failure is mainly caused by cladding creep rupture combined with mechanical strength degradation and hydride reorientation. Hydride reorientation from the circumferential to radial direction may reduce the critical stress intensity that accelerates radial crack propagation. The results of cladding creep tests at $400^{\circ}C$ and 130MPa hoop stress performed in this study indicate that hydride reorientation may occur between 2.6% to 7.0% strain in tube diameter with a hydrogen content range of 40-120ppm. Therefore, it is concluded that hydride re-orientation behaviour is strongly correlated with the cladding creep-induced strain, which varies as functions of temperature and stress acting on the cladding.

Analysis of loss of cooling accident in VVER-1000/V446 spent fuel pool using RELAP5 and MELCOR codes

  • Seyed Khalil Mousavian;Amir Saeed Shirani;Francesco D'Auria
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3102-3113
    • /
    • 2023
  • Following the Fukushima nuclear disaster, the simulation of accidents in the spent fuel pool has become more noticeable. Despite the low amount of decay heat power, the consequences of the accidents in a spent fuel pool (SFP) can be severe due to the high content of long-lived radionuclides and lack of protection by the pressure vessel. In this study, the loss-of-cooling accident (LOFA) for the VVER-1000/V446 spent fuel pool is simulated by employing RELAP5 and MELCOR 1.8.6 as the best estimate and severe accident analysis codes, respectively. For two cases with different total power levels, decay heat of spent fuels is calculated by ORIGEN-II code. For modeling SFP of a VVER-1000, a qualified nodalizations are considered in both codes. During LOFA in SFP, the key sequences such as heating up of the pool water, boiling and reducing the water level, uncovering the spent fuels, increasing the temperature of the spent fuels, starting oxidation process (generating Hydrogen and extra power), the onset of fuel melting, and finally releasing radionuclides are studied for both cases. The obtained results show a reasonable consistency between the RELAP5 and MELCOR codes, especially before starting the oxidation process.

Application of the Digital Mockup to Preliminary Analysis the Remote Maintainability of ACP

  • Song, Tai-Gil;Kim, Sung-Hyun;Park, Byung-Suk;Yoon, Ji-Sup;Lee, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.363-366
    • /
    • 2004
  • KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. In this process, the management process must operate in intense radiation fields as well as in a high temperature. Therefore, remote maintenance has played a significant role in this process. Hence suitable remote handling and maintenance technology needs to be developed along with the design of the process concepts. To do this, we developed the digital mockup for the ACP. The digital mockup provides the capability of verifying the remote operability of the process without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the digital mockup. Through utilizing this graphic simulation in this digital mockup, general guidelines can be established for designing equipment intended for remote handling and maintenance. Also, the designer of the equipment that must be remotely maintained should ensure that there is adequate access to the process equipment. The graphic simulator will substantially reduce the cost of the develo363pment of the remote handling and maintenance procedure as well as the process equipment.

  • PDF

Thermal, Hydraulic and Mechanical Analysis for Disposal of Spent Nuclear Fuel in Saturated Rock Mass in the KBS-3 Concept. (KBS-3 개념에 따른 포화된 암반내 사용후핵연료 처분을 위한 열, 수리, 역학적 특성 해석)

  • 장근무;황용수;김선훈
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1997
  • Reference concepts for the disposal of spent nuclear fuel and the current status of underground rock laboratory were studied. An analysis to simulate the deep disposal of spent nuclear fuel in saturated rock mass was conducted. Main input parameters for numerical study were determined based on the KBS-3 concept. A series of results showed that the temperature distribution around a cavern reached the maximum value at about 10 years after the emplacement of spent fuel. The maximum temperature at the surface of canister was more than about 12$0^{\circ}C$ at about 4 years. This temperature was not much higher than the temperature criteria to meet the performance criteria of an artificial barrier in the KBS-3 concept. The maximum upward displacement due to the heat generation of spent fuel was about 0.9cm at about 10 years after the emplacement of spent fuel. It turned out that the vertical displacement became smaller with the decrease in heat generation of a canister. The quantity of groundwater inflow into a disposal tunnel increased by about 1.6 times at 20 years after the emplacement of spent fuel with the increase of pore pressure around a cavern.

  • PDF

Analysis on the heat-resisting method of the electrolytic metal reduction reactor in the test facility for the spent fuel waste (사용후핵연료 시험시설에서 전기 금속 전환반응기의 내열 방안 분석)

  • 김영환;윤지섭;정재후;홍동희;박기용;진재현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.776-779
    • /
    • 2003
  • To reduce the storage space of spent fuel used at the atomic power plants in the over the world, the uranium elements contained in the spent fuel is being extracted and effectively stored. For this, the spent fuel are oxidized and deoxidized. In this study, it is produced the heat-resisting methods about the spent fuel management technology research and test facility for the spent fuel waste for spent fuel minimized. The first considered processes in the facility are the electrolytic metal reduction reactor process. Since the electrolytic metal reduction reactor is operated at the high temperature range, we have to consider the heat-resisting methods for the devices. For the heat-resisting methods, we have searched and analyzed technical reference for the heat-resisting methods. We have calculated thermal stress and strain of each devices by the commercial analysis software, ANSYS. D.S. It is experimented for inspecting confidence rate of analysis results. By using the results, we have analyzed the problems of parts and determined the heat-resisting material, commercial parts, and the size of parts and O-ring. Based on these results, it is produced the heat-resisting methods of magnesia filter, cathode, and reactor for the electrolytic metal reduction reactor.

  • PDF

REVIEW OF SPENT FUEL INTEGRITY EVALUATION FOR DRY STORAGE

  • Kook, Donghak;Choi, Jongwon;Kim, Juseong;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.115-124
    • /
    • 2013
  • Among the several options to solve PWR spent fuel accumulation problem in Korea, the dry storage method could be the most realistic and applicable solution in the near future. As the basic objectives of dry storage are to prevent a gross rupture of spent fuel during operation and to keep its retrievability until transportation, at the same time the importance of a spent fuel integrity evaluation that can estimate its condition at the final stage of dry storage is very high. According to the national need and technology progress, two representative nations of spent fuel dry storage, the USA and Japan, have established different system temperature criteria, which is the only controllable factor in a dry storage system. However, there are no technical criteria for this evaluation in Korea yet, it is necessary to review the previously well-organized methodologies of advanced countries and to set up our own domestic evaluation direction due to the nation's need for dry storage. To satisfy this necessity, building a domestic spent fuel test database should be the first step. Based on those data, it is highly recommended to compare domestic data range with foreign results, to build our own criteria, and to expand on evaluation work into recently issued integrity problems by using a comprehensive integrity evaluation code.