The performance of the statistical context-sensitive spelling error correction depends on the quality and quantity of the data for statistical language model. In general, the size and quality of data in a statistical language model are proportional. However, as the amount of data increases, the processing speed becomes slower and storage space also takes up a lot. We suggest the improved statistical language model to solve this problem. And we propose an effective spelling error candidate generation method based on a new statistical language model. The proposed statistical model and the correction method based on it improve the performance of the spelling error correction and processing speed.
With the rapid evolution of the Internet and mobile environments, text including spelling errors such as newly-coined words and abbreviated words are widely used. These spelling errors make it difficult to develop NLP (natural language processing) applications because they decrease the readability of texts. To resolve this problem, we propose a spelling error correction model using a spelling error correction dictionary and a newspaper corpus. The proposed model has the advantage that the cost of data construction are not high because it uses a newspaper corpus, which we can easily obtain, as a training corpus. In addition, the proposed model has an advantage that additional external modules such as a morphological analyzer and a word-spacing error correction system are not required because it uses a simple string matching method based on a correction dictionary. In the experiments with a newspaper corpus and a short message corpus collected from real mobile phones, the proposed model has been shown good performances (a miss-correction rate of 7.3%, a F1-measure of 97.3%, and a false positive rate of 1.1%) in the various evaluation measures.
Context-sensitive spelling-error correction methods are largely classified into rule-based methods and statistical data-based methods, the latter of which is often preferred in research. Statistical error correction methods consider context-sensitive spelling error problems as word-sense disambiguation problems. The method divides a vocabulary pair, for correction, which consists of a correction target vocabulary and a replacement candidate vocabulary, according to the context. The present paper proposes a method that integrates a word-phrase n-gram model into a conventional model in order to improve the performance of the probability model by using a correction vocabulary pair, which was a result of a previous study performed by this research team. The integrated model suggested in this paper includes a method used to interpolate the probability of a sentence calculated through each model and a method used to apply the models, when both methods are sequentially applied. Both aforementioned types of integrated models exhibit relatively high accuracy and reproducibility when compared to conventional models or to a model that uses only an n-gram.
The statistical context-sensitive spelling correction technique in this thesis is based upon Shannon's noisy channel model. The interpolation method is used for the improvement of the correction method proposed in the paper, and the general interpolation method is to fill the middle value of the probability by (N-1)-gram and (N-2)-gram. This method is based upon the same statistical corpus. In the proposed method, interpolation is performed using the frequency information between the statistical corpus and the correction document. The advantages of using frequency of correction documents are twofold. First, the probability of the coined word existing only in the correction document can be obtained. Second, even if there are two correction candidates with ambiguous probability values, the ambiguity is solved by correcting them by referring to the correction document. The method proposed in this thesis showed better precision and recall than the existing correction model.
In this paper, we present a preprocessor which corrects word spacing errors and spelling correction errors simultaneously. The proposed expands noisy-channel model so that it corrects both errors in colloquial style sentences effectively, while preprocessing algorithms have limitations because they correct each error separately. Using Eojeol transition pattern dictionary and statistical data such as n-gram and Jaso transition probabilities, it minimizes the usage of dictionaries and produces the corrected candidates effectively. In experiments we did not get satisfactory results at current stage, we noticed that the proposed methodology has the utility by analyzing the errors. So we expect that the preprocessor will function as an effective error corrector for general colloquial style sentence by doing more improvements.
This paper is a study on context-sensitive spelling error correction and uses the Korean WordNet (KorLex)[1] that defines the relationship between words as a graph to improve the performance of the correction[2] based on the vector information of the word embedded in the correction technique. The Korean WordNet replaced WordNet[3] developed at Princeton University in the United States and was additionally constructed for Korean. In order to learn a semantic network in graph form or to use it for learned vector information, it is necessary to transform it into a vector form by embedding learning. For transformation, we list the nodes (limited number) in a line format like a sentence in a graph in the form of a network before the training input. One of the learning techniques that use this strategy is Deepwalk[4]. DeepWalk is used to learn graphs between words in the Korean WordNet. The graph embedding information is used in concatenation with the word vector information of the learned language model for correction, and the final correction word is determined by the cosine distance value between the vectors. In this paper, In order to test whether the information of graph embedding affects the improvement of the performance of context- sensitive spelling error correction, a confused word pair was constructed and tested from the perspective of Word Sense Disambiguation(WSD). In the experimental results, the average correction performance of all confused word pairs was improved by 2.24% compared to the baseline correction performance.
On an automated business document processing system maintaining financial data, errors on query based retrieval of numbers are critical to overall performance and usability of the system. Automatic spelling correction methods have been emerged and have played important role in development of information retrieval system. However scope of the methods was limited to the symbols, for example alphabetic letter strings, which can be reserved in the form of trainable templates or custom dictionary. On the other hand, numbers, a sequence of digits, are not the objects that can be reserved into a dictionary but a pure markov sequence. In this paper we proposed a new OCR model for spelling correction for numbers using the multiple streams and the context based correction on top of probabilistic information retrieval framework. We implemented the proposed error correction model as a sub-module and integrated into an existing automated invoice document processing system. We also presented the comparative test results that indicated significant enhancement of overall precision of the system by our model.
The types of errors corrected by a Korean spelling and grammar checker can be classified into isolated-term spelling errors and context-sensitive spelling errors (CSSE). CSSEs are difficult to detect and to correct, since they are correct words when examined alone. Thus, they can be corrected only by considering the semantic and syntactic relations to their context. CSSEs, which are frequently made even by expert wiriters, significantly affect the reliability of spelling and grammar checkers. An existing Korean spelling and grammar checker developed by P University (KSGC 4.5) adopts hand-made correction rules for correcting CSSEs. The KSGC 4.5 is designed to obtain very high precision, which results in an extremely low recall. Our overall goal of previous works was to improve the recall without considerably lowering the precision, by generalizing CSSE correction rules that mainly depend on linguistic knowledge. A variety of rule-based methods has been proposed in previous works, and the best performance showed 95.19% of average precision and 37.56% of recall. This study thus proposes a statistics based method using a conditional probability model with dynamic window sizes. in order to further improve the recall. The proposed method obtained 97.23% of average precision and 50.50% of recall.
The Journal of Korean Association of Computer Education
/
v.12
no.2
/
pp.87-96
/
2009
We propose a Korean spacing-error correction system that requires small memory usage although the proposed method is a mixture of rule-based and statistical methods. In addition, to train the proposed model to be robust in mobile colloquial sentences in which spelling errors and omissions of functional words are frequently occurred, we propose a method to automatically transform typical colloquial corpus to mobile colloquial corpus. The proposed system uses statistical information of syllable uni-grams in order to increase coverages on new syllable patterns. Then, the proposed system uses error correction rules of two or more grams of syllables in order to increase accuracies. In the experiments on fake mobile colloquial sentences, the proposed system showed relatively high accuracy of 92.10% (93.80% in typical colloquial corpus, 94.07% in typical balanced corpus) spite of small memory usage of about 1MB.
Annual Conference on Human and Language Technology
/
2006.10e
/
pp.25-31
/
2006
본 논문에서는 띄어쓰기 오류와 철자 오류를 동시에 교정 가능한 전처리기를 제안한다. 제시된 알고리즘은 기존의 전처리기 알고리즘이 각 오류를 따로 해결하는 데에서 오는 한계를 극복하고, 기존의 noisy-channel model을 확장하여 대화체의 띄어쓰기 오류와 철자오류를 동시에 효과적으로 교정할 수 있다. N-gram과 자소변환확률 등의 통계적 방법과 어절변환패턴 사전을 이용하여 최대한 사전을 적게 이용하면서도 효과적으로 교정 후보들을 생성할 수 있다. 실험을 통해 현재 단계에서는 만족할 만한 성능을 얻지는 못하였지만 오류 분석을 통하여 이와 같은 방법론이 실제로 효용성이 있음을 알 수 있었고 앞으로 더 많은 개선을 통해 일상적인 대화체 문장에 대해서 효과적인 전처리기로서 기능할 수 있을 것으로 기대 된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.