• Title/Summary/Keyword: Speed up ratio

Search Result 359, Processing Time 0.03 seconds

Phase Changes and Microstructural Properties of Ti Alloy Powders Produced by using Attrition Milling Method (어트리션 밀링법으로 제조된 티타늄합금의 상변화 및 미세조직특성)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.9-19
    • /
    • 2001
  • Microstructure and phase transformation of Ti-Ni-Cu alloy powders produced by using attrition milling method were studied. Mixed powders of Ti-(50-X)Ni-XCu ($X=0{\sim}20$ at%) in composition range were mechanically alloyed for maximum 20 hours by using SUS 1/4" ball in argon atmosphere. Ball to powder ratio was 50: 1 and impeller speed was 350rpm. Mechanically alloyed with attrition millimg method. powder was heat treated at the temperature up to $850^{\circ}C$ for 1 hour in the $10^{-6}$ torr vacuum. Ti-Ni-Cu alloy powders have been fabricated by attrition milling method. and then phase transformation behaviours and microstructual properties of the alloy powders were investigated to assist in improving the the high damping capacity of Ti-Ni-Cu shape memory alloy powders. The results obtained are as follows: 1. After heat treating of fully mechanically alloyed powder at $850^{\circ}C$ for 1hour. most of the B2 and B 19' phases was formed and $TiNi_3$ were coexisted. 2. The B 19' martensite were formed in Ti-Ni-Cu alloy powders whose Cu-content is less than 5a/o. where as the B19 martensite in those whose Cu-content is more than 10at%. 3. The powders of as-milled Ti-Ni-Cu alloys whose Cu-contents is less than 5at% are amorphous. whereas those of as-milled Ti-Ni-Cu alloys whose Cu-content is more than 10at% are crystalline. This means that Cu addition tends to suppress amorphization of Ti-Ni alloy powders.

  • PDF

Effect of accelerators with waste material on the properties of cement paste and mortar

  • Devi, Kiran;Saini, Babita;Aggarwal, Paratibha
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Accelerators are used to speed up the construction by accelerating the setting time which helps in early removal of formwork thus leading to faster construction rate. Admixtures are used in mortar and concrete during or after mixing to improve certain properties of material which cannot be achieved in conventional cement mortar and concrete. The various industrial by products make nuisance and are hazardous to ecosystem as well. These wastes can be used in the construction industries to reduce the consumption of cement/aggregates, cost; and save the energy and environment by utilising waste and eliminate their disposal problem as well. The effect of calcium nitrate and triethanolamine (TEA) as accelerators and marble powder (MP) as waste material on the various properties of cement paste and mortar has been studied in the present work. The replacement ratio of MP was 0-10% @ 2.5% by weight of cement. The addition of calcium nitrate was 0% and 1%; and variation of addition of TEA was 0-0.1@ 0.025% and 0.1-1.0@ 0.1% by weight of cement. On the basis of setting time, some mix proportions were selected and further investigated. Setting time and soundness of cement paste; compressive strength and microstructure of mortar mix of selected mix proportions were studied experimentally at 3, 7 and 28 days aging. Results showed that use of MP, calcium nitrate, TEA and their combination reduced setting time of cement paste for all the mixes. Addition of calcium nitrate increased the compressive strength at all curing ages while MP and TEA decreased the compressive strength. The mechanism of additives was discussed through scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis of the specimens.

Performance Evaluation of Caching in PON-based 5G Fronthaul (PON기반 5G 프론트홀의 캐싱 성능 평가)

  • Jung, Bokrae
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.1
    • /
    • pp.22-27
    • /
    • 2020
  • With the deployment of 5G infrastructure, content delivery network (CDN) will be a key role to provide explosive growing services for the independent media and YouTube which contain high-speed mobile contents. Without a local cache, the mobile backhaul and fronthaul should endure huge burden of bandwidth request for users as the increase number of direct accesses from contents providers. To deal with this issue, this paper fist presents both fronthaul solutions for CDN that use dark fibers and a passive optical network (PON). On top of that, we propose the aggregated content request specialized for PON caching and evaluate and compare its performance to legacy schemes through the simulation. The proposed PON caching scheme can reduce average access time of up to 0.5 seconds, 1/n received request packets, and save 60% of backhaul bandwidth compared to the no caching scheme. This work can be a useful reference for service providers and will be extended to further improve the hit ratio of cache in the future.

A Study on Energy-Saving of Neon Sign by ON/OFF Control (네온사인의 점멸에 의한 전기에너지의 절약에 관한 연구)

  • 김인식;김성수;이동인;이광식
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.3
    • /
    • pp.27-35
    • /
    • 1994
  • As a study on the method for energy-saving of the neon sign, this paper has systematically investigated the quantity of energy-consumption of the sign through a long period of time, according to the changes of the sign's ON/OFF speed, time ratio, etc. One neon sign(1 [kW] was built up for this. For this experiment, the ON/OFF periods(T) were set to 1.0,2.0,4.0 and 8.0[sec), and the ON time ratios(D) to 25, 50, 75 and 100 [%] respectively. Energy Analyzer was used for more accurate measurement. As the result, we found that the energy consumption of the sign had no effect on the ON/OFF period (T) when T was more than 2.0(sec), but that the energy consumption was decreasing when T was less than 2.0[sec]. The greatest value in the energy-saving of the sign appeared when the values of T and D were small altogather. And under the conditions, the energy consumption with T=1.0[sec) and D= 25[%] decreased 83.0[%] in comparison with the continuous ON case.

  • PDF

Development of a Precision Seed Metering Device for Direct Seeding of Rice (벼 직파용 정밀 배종장치 개발)

  • Yoo S. N.;Choi Y. S.;Suh S. R.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.5 s.112
    • /
    • pp.261-267
    • /
    • 2005
  • In order to save labor and cost, direct seeding has been considered as an important alternative to the machine transplanting in rice cultivation. As current seeders for direct seeding of rice seeds drill irregular amount of seeds under various operating conditions, conventional drilling should be turned to precision planting which enables accurate placement of proper amount of rice seeds at equal intervals within rows. In this study, design, construction and performance evaluation of a precision seed metering device for planting of rice seeds were carried out. As prototype, the conventional roller type seed metering device was modified for planting: increasing diameter of metering roller, setting 2 or 4 seed cells on metering roller, adding seed discharging lid and its driving cam mechanism. Through performance tests for prototype and the current seed metering device, number of seeds in a hill, planting space and its error ratio, coefficient of variation of planting space (planting accuracy), and seeding length of $90\%$ of seeds in a hill divided by planting space (planting precision) at setting planting spaces of 15, and 20cm, seeding heights of 10, and 20cm, and seeding speeds of 0.1, 0.2, and 0.5m/s were investigated. Prototype showed better seed planting performance than the current seed metering devices. When setting planting space of 15 cm and seeding height of 10cm, prototype with 2 seed cells showed that variations of planting space and seeding lengths of $90\%$ of seeds in a hill at up to seeding speed of 0.5m/s were within 0.9cm, and 3.6cm, respectively.

Development of a Time-Domain Simulation Tool for Offshore Wind Farms

  • Kim, Hyungyu;Kim, Kwansoo;Paek, Insu;Yoo, Neungsoo
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1047-1053
    • /
    • 2015
  • A time-domain simulation tool to predict the dynamic power output of wind turbines in an offshore wind farm was developed in this study. A wind turbine model consisting of first or second order transfer functions of various wind turbine elements was combined with the Ainslie's eddy viscosity wake model to construct the simulation tool. The wind turbine model also includes an aerodynamic model that is a look up table of power and thrust coefficients with respect to the tip speed ratio and pitch angle of the wind turbine obtained by a commercial multi-body dynamics simulation tool. The wake model includes algorithms of superposition of multiple wakes and propagation based on Taylor's frozen turbulence assumption. Torque and pitch control algorithms were implemented in the simulation tool to perform max-Cp and power regulation control of the wind turbines. The simulation tool calculates wind speeds in the two-dimensional domain of the wind farm at the hub height of the wind turbines and yields power outputs from individual wind turbines. The NREL 5MW reference wind turbine was targeted as a wind turbine to obtain parameters for the simulation. To validate the simulation tool, a Danish offshore wind farm with 80 wind turbines was modelled and used to predict the power from the wind farm. A comparison of the prediction with the measured values available in literature showed that the results from the simulation program were fairly close to the measured results in literature except when the wind turbines are congruent with the wind direction.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 -)

  • Kim, Jong-Do;Kil, Byung-Lea;Kwak, Myung-Sub;Song, Moo-Keun
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.

A COMPARISON OF THE APICAL SEAL PRODUCED BY EASY FILLING SYSTEM AND QUICK OBTURATION SYSTEM (Easy Filling 및 Quick Obturation System을 이용한 열연화 충전법의 치근단 밀폐도 평가)

  • Shin, Jung-In;Kum, Kee-Yeon;Lee, Sung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.202-211
    • /
    • 2000
  • The aim of this study was to compare the apical sealing ability of a new thermoplasticized gutta-percha filling technique, the Easy Filling and the Quick Obturation system with lateral condensation technique and Thermafil system to evaluate their clinical acceptabilities. Fifty-two extracted single-rooted teeth were instrumented to #35 using the .04 taper ProFile system. Four groups of 12 teeth were obturated by lateral condensation technique. Thermafil system and two new thermoplasticized gutta-percha techniques, the Easy Filling system and Quick Obturation system (Meta Dental co. Ltd. Korea), respectively. Four teeth served as controls. After the teeth were immersed in 2% methylene blue dye for 48 hours, they were resected horizontally at 1mm to 5mm level from the anatomical apex using a low-speed microtome. Each section was examined under a stereomicroscope at ${\times40}$ magnification and photographed. After each image was scanned, the leakage area was measured at each level using Brain 3 (Nosdia Tech., Korea) software. Leakage ratio was calculated for each group and was analyzed statistically to come up with the following results: 1. At 1mm level, the Quick Obturation system had the largest amount of apical leakage and it was statistically significant when compared with the lateral condensation group and the Thermafil group (p<0.05). 2. At 2mm and 3mm level, there were no significant difference of apical leakage among all four groups (p>0.05), and from 4mm level, no apical dye penetration was observed in all the groups. In conclusion, the apical seal produced by Easy Filling system and the Quick Obturation system was comparable to lateral condensation technique and Thermafil system except for the 1mm level. More improvement of the apical seal can be expected as the operator becomes skillful with the new techniques.

  • PDF

Superfine-Nanocomposite Mo - Cu Powders Obtained by Using Planetary Ball Milling

  • Lee, Han-Chan;Moon, Kyoung-Il;Shin, Paik-Kyun;Lee, Boong-Joo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1340-1345
    • /
    • 2018
  • Mo-10 at.% Cu nanocomposite powders were fabricated by using planetary ball-milling (PBM), a mechanical alloying technique for preparing nanocomposite alloy powders of metals with mutual insolubility, and the variations in the physical and the chemical characteristics with the process conditions were investigated. We observed that Mo-10 at.% Cu was an appropriate composition to ensure a good alloying grade and minimal welding between particles. The influences of the temperature and the milling conditions on the mechanical alloying process and the phase change of Mo-10 at.% Cu composite powders were investigated, and the particle and the grain sizes of the powders after mechanical alloying were confirmed. The Mo-10 at.% Cu powders showed homogeneous elemental distributions and no phase changes up to $1200^{\circ}C$; their compositions were retained after the mechanical alloying process. The finest grain size obtained was about 5 nm for powders processed using optimum PBM processing conditions: ball-to-powder weight ratio of 5 : 1, ambient air atmosphere, a milling time of 20 h, a rotation speed of 200 rpm, and a stearic acid content of 4 wt.% produced superfine-grained Mo-10 at.% Cu nanocomposite powders with an average grain size of 5 nm (which is smaller than that of other similar materials reported in the literature). The analytical results confirmed that the PBM technique presented here is a promising method for preparing superfine-grained Mo-10 at.% Cu powders with improved properties.

Effects of Weight-Bearing Training with Elastic Bands on less - Affected Side during Functional Electronic Stimulation on Walking and Balance in Stroke Patients (기능적 전기자극시 비 마비측에 탄력밴드를 적용한 체중지지훈련이 뇌졸중 환자의 보행과 균형에 미치는 영향)

  • Jeong, Chae-min;Woo, Young-Keun;Won, Jong-im;Kim, Su-Jin
    • PNF and Movement
    • /
    • v.20 no.3
    • /
    • pp.417-430
    • /
    • 2022
  • Purpose: The purpose of this study was to examine the effect of weight-bearing training with an elastic band during functional electrical stimulation (FES) on walking and balance functions in stroke patients. Methods: Twenty patients with chronic stroke were divided into an experimental group assigned to weight-bearing training with an elastic band during functional electrical stimulation (FES; n=10) and a control group assigned to weight-bearing training alone during FES (n=10). The patients in both groups attended physical therapy sessions five times a week for four consecutive weeks. The experimental group underwent weight-bearing training with an elastic band during FES five times a week for four weeks. The control group underwent weight-bearing training during FES. Balance parameters were measured before and after the intervention using the Balancia program. Moreover, all patients were evaluated using the Berg Balance Scale (BBS), the Time Up and Go Test (TUGT), and the Wisconsin Gait Scale (WGS) before and after each intervention. Results: The results showed that weight-bearing training with elastic bands during FES and weight-bearing training during FES had a significant effect on the affected side's weight-bearing ratio, BBS, TUGT, and WGS in both groups (p <0.05). Additionally, the results showed that the changes observed in the two groups indicate significant differences in path length, average speed, BBS score, TUGT time, and WGS score between the groups (p < 0.05). Conclusion: In patients with stroke, weight-bearing training with an elastic band during FES affected on walking and balance. Therefore, it is an optional intervention for the balance and walking ability of stroke patients.