• Title/Summary/Keyword: Speed to Insight

Search Result 65, Processing Time 0.023 seconds

A Review on the Change of Telecommunication Market in Perspective of Customer (소비자 관점의 통신시장 변화 고찰)

  • Hwang, Min-Woo;Jung, Sang-Ik
    • Journal of Information Technology Services
    • /
    • v.7 no.1
    • /
    • pp.45-62
    • /
    • 2008
  • This review examines the rapid growth of qualitative and quantitative of telecommunication industry for past couple of years from customer's viewpoint. Most of the telecommunication products were positioned in the market by the businesses and government's support, but the entity of telecommunication products were never interpreted from the user's viewpoint. Even though, various kinds of telecommunication services have been actively discussed by businesses, government, and IT professionals, it has not been sufficiently discussed by the marketing academia where they need to focus a lot on customer's utility. For the purpose of providing an insight of the telecommunication service marketing strategy, this study looked over old and new directions of growth, failure and evolution of services by focusing on two main pillar of communication business, which is high-speed internet and mobile phone service. Additionally, the research explains and mentions the limit and trend of the telecommunication service marketing, and the future research task that needs to be solved.

Basic Design of Bearingless Switched Reluctance Motor with Hybrid Stator poles

  • Wang, Huijun;Liu, Jianfeng;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.336-346
    • /
    • 2012
  • In this paper, a novel bearingless switched reluctance motor (BLSRM) with hybrid stator poles is proposed. The structure and operating principle are presented. In order to describe the design methodology clearly, analytical torque and radial force models are established. Further, basic design procedure is described. The numbers of phases and poles have important influence on the selection of structure. These effects, along with sizing of machine envelope and internal dimensions, make the machine design an insight-intensive effort. Effect of pole arcs and air-gap length on the production of torque and radial force are analyzed in detail. Mechanical design factors such as hoop stress and first critical speed are also considered. Based on the above analysis, the characteristics of the proposed BLSRM are analyzed. A prototype motor is designed and manufactured. The validity of the proposed structure is verified by the experimental results.

A study on the multi-frequency acoustic target strength of krill using a stochastic distorted-wave born approximation (SDWBA) model

  • Wuju Son;Wooseok Oh;Hyoung Sul La;Kyounghoon Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.225-230
    • /
    • 2024
  • We examined the dB difference in target strength at multiple frequencies (ΔTS) for the identification of Antarctic krill (Euphausia superba) and ice krill (Euphausia crystallorophias) using a stochastic distorted-wave Born approximation model. Our investigation focused on ΔTS patterns at multiple frequencies in relation to size, along with key acoustic properties influencing TS, including density and sound speed contrast, fatness, and orientation. The findings revealed that the orientation and fatness significantly affect the ΔTS patterns. The results provide insight into the importance of the multi-frequency technique for estimating krill biomass and their ecological interactions with environmental features in the Southern Ocean.

Suggestion of Delineators Considering Traffic Safety at Curve Sections (교통안전을 고려한 곡선부 시선유도시설물 제시에 관한 연구)

  • Kwon, Sung-Dae;Lee, Suk-Ki;Jeong, Jun-Hwa;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.403-412
    • /
    • 2011
  • On a curve radius, there is speed deviation because a driver who is on the curve radius can have visual distortion. The curve radius can be more dangerous than a straight radius by many reasons. Especially, visibility paralysis of delineator that is because of night and bad weather. Can pervert the information about curve sections, it threatens safety. More over accident risk is increased by influence to travel speed. Therefore, it needs to build and control delineators for driver's visibility. Therefore, this study focus on finding the two types of delineator(the retro-reflection and inside-lighting delineator) by insight-surveying and the operating speed are compared by survey and operating speed. Finally, inside-lighting delineator will be selected in terms of safety at the curve sections. The inside-lighting delineator was more effective than the retro-reflection delineator on visibility, the necessity of reduction of speed and will reduce the hazard at curve sections. Also, the study analyzes safety is guaranteed by the slight reduction of speed when the driver enters a curve radius with inside-lighting delineator. As a result, the inside-lighting delineator can give the information about horizontal and vertical profile effectively, so it can reduce the accident risk. And it can use to improve traffic safety on curve radius.

Exploring market uncertainty in early ship design

  • Zwaginga, Jesper;Stroo, Ko;Kana, Austin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.352-366
    • /
    • 2021
  • To decrease Europe's harmful emissions, the European Union aims to substantially increase its offshore wind energy capacity. To further develop offshore wind energy, investment in ever-larger construction vessels is necessary. However, this market is characterised by seemingly unpredictable growth of market demand, turbine capacity and distance from shore. Currently it is difficult to deal with such market uncertainty within the ship design process. This research aims to develop a method that is able to deal with market uncertainty in early ship design by increasing knowledge when design freedom is still high. The method uses uncertainty modelling prior to the requirement definition stage by performing global research into the market, and during the concept design stage by iteratively co-evolving the vessel design and business case in parallel. The method consists of three parts; simulating an expected market from data, modelling multiple vessel designs, and an uncertainty model that evaluates the performance of the vessels in the market. The case study into offshore wind foundation installation vessels showed that the method can provide valuable insight into the effect of ship parameters like main dimensions, crane size and ship speed on the performance in an uncertain market. These results were used to create a value robust design, which is capable of handling uncertainty without changes to the vessel. The developed method thus provides a way to deal with market uncertainty in the early ship design process.

The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient (송출공의 회전이 송출계수와 압력계수에 미치는 영향)

  • Ha, Kyoung-Pyo;Ku, Nam-Hee;Kauh, S.Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

New Fuzzy Controller for High Performance of IPMSM Drive (IPMSM 드라이브의 고성능 제어를 위한 새로운 퍼지제어기)

  • 이정철;이홍균;김종관;정동화
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.199-207
    • /
    • 2003
  • This paper is proposed new fuzzy controller for high performance of interior permanent magnet synchronous motor(IPMSM) drive. New fuzzy controller take out appropriate amounts of accumulated control input according to fuzzily described situations in addition to the incremental control input calculated by conventional direct fuzzy controller The structures of the proposed controller is motivated by the problems of direct fuzzy controller. The direct controller generally give inevitable overshoot when one tries to reduce rise time of response especially when a system of order higher than one is under consideration. The undesirable characteristics of the direct fuzzy controller are caused by integrating operation of the controller, even though the Integrator itself is introduced to overcome steady state error in response. Proposed controller fuzzily clear out integrated quantities acrording to situation. This paper attempts to provide a thorough comparative insight into the behavior of IPMSM drive with direct and new fuzzy speed controller. The validity of new fuzzy speed controller is confirmed by response results for IPMSM drive system.

Analysis of Detecting Effectiveness of a Homing Torpedo using Combined Discrete Event & Discrete Time Simulation Model Architecture (이산 사건/이산 시간 혼합형 시뮬레이션 모델 구조를 사용한 유도 어뢰의 탐지 효과도 분석)

  • Ha, Sol;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2010
  • Since a homing torpedo system consists of various subsystems, organic interactions of which dictate the performance of the torpedo system, it is necessary to estimate the effects of individual subsystems in order to obtain an optimized design of the overall system. This paper attempts to gain some insight into the detection mechanism of a torpedo run, and analyze the relative importance of various parameters of a torpedo system. A database for the analysis was generated using a simulation model based on the combined discrete event and discrete time architecture. Multiple search schemes, including the snake-search method, were applied to the torpedo model, and some parameters of the torpedo were found to be stochastic. We then analyzed the effectiveness of torpedo’s detection capability according to the torpedo speed, the target speed, and the maximum detection range.

Multi-objective Optimal Design for the Low Drag Tail Shape of the MIRA model with the Lift Effect taken into account (양력 효과를 고려한 MIRA model 후미의 저저항 다목적 최적설계)

  • Lee Juhee;Lee Kyunghuhn;Kim Joonbae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.565-568
    • /
    • 2002
  • In the flow analysis around a bluffbody such as road vehicles, drag reduction has been of the primary concern mainly due to the effect on fuel economy. To reduce the drag, which is mostly due to the pressure difference caused by the flow separation, the location of the separation and eddy sizes are controlled. However, less attention has been given to the effect of the lift. The effect of lift may cause the driving stability problem of the vehicle at high speed white heavy downward effect of lift together with the vehicle weight may require more power to drive the vehicle forward. It is considered worthwhile to pursue the optimal design of the low drag tail shape of the MIRA model while taking the lift effect into account, even though it is considered as a reference. To this end, a commercial multi-objective optimization code, FRONTIER, Is used together with the CFD code, STAR-CD. It is hoped that the results will provide more insight into the flow field around the bluffbody as transportation means.

  • PDF

The nose-up effect in twin-box bridge deck flutter: Experimental observations and theoretical model

  • Ronne, Maja;Larsen, Allan;Walther, Jens H.
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.293-308
    • /
    • 2021
  • For the past three decades a significant amount of research has been conducted on bridge flutter. Wind tunnel tests for a 2000 m class twin-box suspension bridge have revealed that a twin-box deck carrying 4 m tall 50% open area ratio wind screens at the deck edges achieved higher critical wind speeds for onset of flutter than a similar deck without wind screens. A result at odds with the well-known behavior for the mono-box deck. The wind tunnel tests also revealed that the critical flutter wind speed increased if the bridge deck assumed a nose-up twist relative to horizontal when exposed to high wind speeds - a phenomenon termed the "nose-up" effect. Static wind tunnel tests of this twin-box cross section revealed a positive moment coefficient at 0° angle of attack as well as a positive moment slope, ensuring that the elastically supported deck would always meet the mean wind flow at ever increasing mean angles of attack for increasing wind speeds. The aerodynamic action of the wind screens on the twin-box bridge girder is believed to create the observed nose-up aerodynamic moment at 0° angle of attack. The present paper reviews the findings of the wind tunnel tests with a view to gain physical insight into the "nose-up" effect and to establish a theoretical model based on numerical simulations allowing flutter predictions for the twin-box bridge girder.