• Title/Summary/Keyword: Speed subject

Search Result 455, Processing Time 0.028 seconds

An Analysis of 500m Inline Skate Starting Motions (인라인 스케이트 500m 출발동작 분석)

  • Park, Ki-Beom;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.23-29
    • /
    • 2007
  • The purpose of this study was to examine if there are kinematic variables differences between national representative players (NRP) and non national representative players (NNRP) during 500 m inline skate starting motion. Four NRP and six NNRP were recruited for the study. Each subject executed starting motion five times on a $2{\times}12m$ start way in a gymnasium. Kinematic variables were analyzed by the three-dimensional motion analysis system (60Hz). It was hypothesized that there are difference in elapsed time and center of mass acceleration in starting phase between groups since starting phase has been considered important in sprinting. The results showed that the NRP had significantly shorter starting phase time than that of NNRP. 1) An elapsed time in phase P1 of NRP was shorter than that of NNRP, and excellent players have early started their first stroke. 2) Both NRP and NNRP have started at the same spot, and displacement of the center of gravity in starting posture of NRP group was at the front compared to NNRP group. 3) Average step lengths of NRP were longer than those of NNRP, and a step change of NRP was stabler compared to that of NNRP. 4) In a speed change of the center of gravity NRP showed comparatively high speed from P1 to P4.

Temperature Rise Analysis of Sliding Contact Surfaces in Lubrication Considering Elastic Deformation (탄성변형을 고려한 윤활 상태에서 거친 표면의 미끄럼 접촉온도 해석)

  • Cho Yong-Joo;Kim Byoung-Sun;Lee Sang-Don
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.137-143
    • /
    • 2006
  • The sliding contact interface of machine components such as bearings, gears frequently operates in lubrication at the inception of sliding failure under high loads, speed and slip. The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. Most surface failure in sliding contact region result from frictional heat generation. However, it is difficult to measure temperature rise experimentally. So the calculation of the surface temperature at a sliding contact interface has long been an interesting and important subject for tribologist. The surface temperature rise is related in contact pressure, sliding speed, material properties and lubrication thickness. Though roughness, load, ect all of the condition, are same, film thickness varies with velocity. In this study, surface temperature rise due to frictional heating in lubrication is calculated with various velocities. Surface film shearing and dry solid asperity contact are used to simulate the change of frictional heat in lubricated contact

Effect of Hysteresis on Interface Waves in Contact Surfaces

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.578-586
    • /
    • 2010
  • This paper describes a theoretical model and acoustic analysis of hysteresis of contacting surfaces subject to compression pressure. Contacting surfaces known to be nonlinear and hysteretic is considered as a simple spring that has a complex stiffness connecting discontinuous displacements between two solid contact boundaries. Mathematical formulation for 1-D interfacial wave propagation between two contacting solids is developed using the complex spring model to derive the dispersion relation between the interface wave speed and the complex interfacial stiffness. Existence of the interface wave propagating along the hysteretic interface is studied in theory and discussed by investigating the solution to the dispersion equation. Unlike the linear interface without hysteresis, there can exist only one distinct mode of interface waves for the hysteretic interface, which is anti-symmetric motion. The anti-symmetric mode of interface wave propagates with the velocity faster than the Rayleigh surface wave but less than the shear wave depending on the interfacial stiffness. If the contacting surfaces are compressed so much that the linear interfacial stiffness is very high, the hysteretic stiffness does not affect the interface wave velocity. However, it has an effect on the speed of interface wave for a loosely contact surfaces with a relatively low linear stiffness. It is also found that the phase velocity of anti-symmetric wave mode converges to the shear wave velocity in despite of the linear stiffness value if the hysteretic stiffness approaches 0.5.

Sensorless Control of Induction Motor Drives Using an Improved MRAS Observer

  • Kandoussi, Zineb;Boulghasoul, Zakaria;Elbacha, Abdelhadi;Tajer, Abdelouahed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1456-1470
    • /
    • 2017
  • This paper presents sensorless vector control of induction motor drives with an improved model reference adaptive system observer for rotor speed estimation and parameters identification from measured stator currents, stator voltages and estimated rotor fluxes. The aim of the proposed sensorless control method is to compensate simultaneously stator resistance and rotor time constant variations which are subject of large changes during operation. PI controllers have been used in the model reference adaptive system adaptation mechanism and in the closed loops of speed and currents regulation. The stability of the proposed observer is proved by the Lyapunov's theorem and its feasibility is verified by experimentation. The experimental results are obtained with an 1 kW induction motor using Matlab/Simulink and a dSPACE system with DS1104 controller board showing the effectiveness of the proposed approach in terms of dynamic performance.

Dynamic behaviour of high-sided road vehicles subject to a sudden crosswind gust

  • Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.325-346
    • /
    • 2003
  • High-sided road vehicles are susceptible to a sharp-edged crosswind gust, which may cause vehicle accidents such as overturning, excessive sideslip, or exaggerated rotation. This paper thus investigates the dynamic behaviour and possible accidents of high-sided road vehicles entering a sharp-edged crosswind gust with road surface roughness and vehicle suspension included. The high-sided road vehicle is modelled as a combination of several rigid bodies connected by a series of springs and dampers in both vertical and lateral directions. The random roughness of road surface is generated from power spectral density functions for various road conditions. The empirical formulae derived from wind tunnel test results are employed to determine aerodynamic forces and moments acting on the vehicle. After the governing equations of motion are established, an extensive computation work is performed to examine the effects of road surface roughness and vehicle suspension on the dynamic behaviour and vehicle accidents. It is demonstrated that for the high-sided road vehicle and wind forces specified in the computation, the accident vehicle speed of the road vehicle running on the road of average condition is relatively smaller than that running on the road of very good condition for a given crosswind gust. The vehicle suspension system should be taken into consideration, and the accident vehicle speed becomes smaller if the vehicle suspension system has softer springs and lighter dampers.

Effect of Treadmill Training on Walking Velocity and Gait Endurance in patients with chronic hemiplegia (트레드밀 보행훈련이 만성편마비 환자의 보행 속도와 보행 지구력에 미치는 영향)

  • Kim Sang-Yub
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.44-53
    • /
    • 2004
  • Treadmill training is a new promising therapy in gait rehabilitation of patients with hemiplegia. The purpose of this study was to identify the effect of treadmill training on walking speed and gait endurance in patients with chronic hemiplegia. The subject of this includes twenty patients, who had suffered from chronic hemiplegia and were in the K rehabilitation center; each ten patients were randomly assigned to experimental or control group. Among twenty patients, one group of ten for experiment was treated with progressive speed increase treadmill ambulation traing besides conventional physical therapy(SITAT) while the rest ten for the controlled group was treated with conventional physical therapy(CPT) only, for 8 weeks alike. Before and after the foregoing 8 weeks training, walking velocity and gait endurance were measured to both groups. The data were analyzed by paired t-test. The results of this study are as follows; The SITAT and CPT showed the significant difference in walking velocity and gait endurance. As compared the rehabilitation of dependent varibles between the SITAT and CPT, SITAT showed the significant difference in walking velocity and gait endurance. The outcome suggest that patient with chronic hemiplegia can improve their walking velocity and gait endurance throught treadmill training.

  • PDF

Effect of rain on flutter derivatives of bridge decks

  • Gu, Ming;Xu, Shu-Zhuang
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.209-220
    • /
    • 2008
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. Many studies have been performed on the methods and applications of identification of flutter derivatives of bridge decks under wind action. In fact, strong wind, especially typhoon, is always accompanied by heavy rain. Then, what is the effect of rain on flutter derivatives and flutter critical wind speed of bridges? Unfortunately, there have been no studies on this subject. This paper makes an initial study on this problem. Covariance-driven Stochastic Subspace Identification (SSI in short) which is capable of estimating the flutter derivatives of bridge decks from their steady random responses is presented first. An experimental set-up is specially designed and manufactured to produce the conditions of rain and wind. Wind tunnel tests of a quasi-streamlined thin plate model are conducted under conditions of only wind action and simultaneous wind-rain action, respectively. The flutter derivatives are then extracted by the SSI method, and comparisons are made between the flutter derivatives under the two different conditions. The comparison results tentatively indicate that rain has non-trivial effects on flutter derivatives, especially on and $H_2$ and $A_2$thus the flutter critical wind speeds of bridges.

Study on Laser Welding of Automotive Modular Steering Gear Housing by using Multi-Axis Control (다축제어를 이용한 모듈형 조향장치 하우징의 레이저용접에 관한 연구)

  • Kim, Jung-Do;Lee, Chang-Je
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.59-66
    • /
    • 2008
  • Recently, automobile parts progress with modularization, which a great many allied products are modularized. Therefore, the purpose of this study is to develope modular housing for modularization of steering gear. Generally, steering gear housing is composed of valve housing and rack housing, it is important to combine two housings. However, housing having the pipe shape is very sensitive to welding distortion, and welding trajectory is very complicated. In order to solve this subject, cooperative control by using robots was constructed. Further, we developed the dedicated system to suit modular housing based on it, and applied laser welding to there. Moreover, welding speed was controlled in the rapid curve section so that the defect in trajectory of housing was reduced to obtain sound weldment. Accordingly, produced housing by this way is presented enough withstanding pressure to $100kg/cm^2$, and roundness and straightness are measured about 10/100 and 0.9/100 respectively.

Lightpaths Routing for Single Link Failure Survivability in IP-over-WDM Networks

  • Javed, Muhammad;Thulasiraman, Krishnaiyan;Xue, Guoliang(Larry)
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.394-401
    • /
    • 2007
  • High speed all optical network is a viable option to satisfy the exponential growth of internet usage in the recent years. Optical networks offer very high bit rates and, by employing technologies like internet protocol over wavelength division multiplexing(IP-over-WDM), these high bit rates can be effectively utilized. However, failure of a network component, carrying such high speed data traffic can result in enormous loss of data in a few seconds and persistence of a failure can severely degrade the performance of the entire network. Designing IP-over-WDM networks, which can withstand failures, has been subject of considerable interest in the research community recently. Most of the research is focused on the failure of optical links in the network. This paper addresses the problem of designing IP-over-WDM networks that do not suffer service degradation in case of a single link failure. The paper proposes an approach based on the framework provided by a recent paper by M. Kurant and P. Thiran. The proposed approach can be used to design large survivable IP-over-WDM networks.

Design of RS Encoder/Decoder using Modified Euclid algorithm (수정된 유클리드 알고리즘을 이용한 RS부호화기/복호화기 설계)

  • Park Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1506-1511
    • /
    • 2004
  • The error control of digital transmission system is a very important subject because of the noise effects, which is very sensitive to transmission performance of the digital communication system It employs a modified Euclid's algorithm to compute the error-location polynomial and error-magnitude polynomial of input data. The circuit size is reduced by selecting the Modified Euclid's Algorithm with one Euclid Cell of mutual operation. And the operation speed of Decoder is improved by using ROM and parallel structure. The proposed Encoder and Decoder are simulated with ModelSim and Active-HDL and synthesized with Synopsys. We can see that this chip is implemented on Xilinx Virtex2 XC2V3000. A share of slice is 28%. nut speed of this paper is 45Mhz.