• Title/Summary/Keyword: Speed sintering

Search Result 92, Processing Time 0.026 seconds

Effect of Screen Printing and Sintering Conditions on Properties of Thick Film Resistor on AlN Substrate (인쇄 및 소결조건이 AlN 기판용 후막저항체의 특성에 미치는 영향)

  • Koo, Bon Keup
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.344-349
    • /
    • 2014
  • $RuO_2$-based high frequency thick-film resistor paste was printed at the speed of 10, 100, 300 mm/sec on the AlN substrate, and then sintered at between 750 and $900^{\circ}C$. The sintered thick films were characterized in terms of printing and sintering conditions. With increasing printing speed, the thickness and roughness of sintered film increased. The resistance of the thick film resistor was reduced by increasing the printing speed from 10 to 100 mm/sec, but did not significantly change at 300 mm/sec speed. With increasing sintering temperature, the surface roughness and thickness of sintered resistor film decreased. The reduction rate was large in case of fast printed resistor. The resistance of the resistor increased up to $800^{\circ}C$ with sintering temperature, but again decreased at the higher sintering temperature.

Pallet speed control in a sintering plant using neural networks (신경회로망을 이용한 소결기 팰릿 속도 제어)

  • Jang, Min;Cho, Sung-Jun
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.261-270
    • /
    • 1999
  • Sintering transforms powdered ore into lumped ore so that the latter can be used in a blast furnace. The powdered ore combined with coke and other materials is loaded into a container and moved along by a pallet while the ignited coke bums. The speed by which the pallet moves determines how much sintering takes place. Since the process is complicated and lacks an accurate mathematical model, human operators manually control the speed by monitoring various factors in the plant. In this paper, we propose a neural network-based pallet speed controller which copies human operator knowledge. Actual process data were collected from a sintering plant fer eight months and preprocessed to remove noisy and inconsistent data. A multilayer perceptron was trained using a back-propagation learning algorithm. In on-line testing at the sinter plant, the proposed model reliably controlled pallet speed during normal operation without the help of human operators. Moreover, the duality and productivity was as good as with human operators.

  • PDF

Pallet speed control in a sintering plant using neural networks (신경회로망을 이용한 소결기 팰릿 속도 제어)

  • Jang, Min;Cho, Sung-Jun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.261-270
    • /
    • 1999
  • Sintering transforms powdered ore into lumped ore so that the latter can be used in a blast furnace. The powdered or combined with coke and other materials is loaded into a container and moved along by a pallet while the ignited coke burns. The speed by which the pallet moves determines how much sintering takes place. Since the process is complicated and lacks an accurate mathematical model, human operators manually control the speed by monitoring various factors in the plant. In this paper, we propose a neural network-based pallet speed controller which copies human operator knowledge. Actual process data were collected from a sintering plant for eight months and preprocessed to remove noisy and inconsistent data. A multilayer perceptron was trained using a back-propagation learning algorithm. In on-line testing at the sinter plant, the proposed model reliably controlled pallet speed during normal operation without the help of human operators. Moreover, the quality and productivity was as good as with human operators.

  • PDF

The Effect of Sintering Parameters on the Densification Behavior of PM High Speed Steel (분말 고속도공구강의 소결 조건에 따른 치밀화 거동연구)

  • 김용진
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.190-197
    • /
    • 1994
  • The densification behavior during a sintering of M2 and T15 grade high speed steel powder compacts was reported. Sintered densities over 98% theoretical were achieved by a liquid phase sintering in vacuum for both grades. The optimum sintering temperature range where full densification could be achieved without excessive carbide coarsening and incipient melting was much narrower in M2 than in T15 grade. The sintering response was mainly affected by the type of carbides present. The primary carbides in M2 were identified as $M_6C$ type whereas those in T15 were MC type which provides wider sintering range. The addition of elemental carbon up to 0.3% lowered the optimum sintering temperature for both grades, but had little effect on expanding the sintering range and sintered structure.

  • PDF

Effect of the speed sintering schedule on the marginal and internal gaps of multi-layered zirconia prothesis (급속소결이 다층 지르코니아 치과보철물의 변연 및 내면 적합도에 미치는 영향)

  • Kim, Se-Yeon;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Purpose: The purpose of this in vitro study is to evaluate the clinical acceptability of the marginal discrepancies and internal spacing of multi-layered zirconia prothesis by speed sintering. Methods: The two specimen types come from the same manufacturer but differ in the ingredients in layered zirconia and indication, that is anterior and posterior. The designs of both specimens were full contour crowns, and a total of 20 pieces were repeatedly fabricated, 10 for each group. The specimens were divided into two subgroups (n=10) and sintered with various total times (4 hours, 8 hours) at the maximum temperature (1,530℃). The gap between the two groups of multi-layered zirconia prostheses was measured using a silicone replica technique of 2D analysis method. The independent sample t-test was then used to compare and analyze the data obtained from the two groups (α=0.05). Results: The marginal and internal gap was superior in the 8-hour compared to the 4-hour group, and the results exhibited significant differences (p<0.05). All specimens showed that using the speed sintering schedule does not exceed the clinically permitted value of 120 ㎛, meaning zirconia prothesis using the speed sintering was adequate. Conclusion: The sintering condition is shown to affect the marginal and internal gaps of multi-layered zirconia restoration.

The effect of short and long duration sintering method on microstructure and flexural strength of zirconia (단시간과 장시간의 소결방법에 따른 지르코니아의 굴곡 강도와 미세구조의 변화)

  • Lee, Ha-Bin;Lee, Tae-Hee;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.73-79
    • /
    • 2020
  • Purpose: The aim of this study was to investigate the influence of short and long duration sintering on microstructure and flexural strength of zirconia. Methods: To conduct three-point bending test, Zirconia specimens are milled according to ISO 6872 guidelines(N=18, n=9 per group). Two specimens group(n=8) is sintered for 10 hours(Standard schedule) and 3 hours(Speed schedule) at the peak temperature of 1550℃ with silicon carbide sintering furnace. Flexural strength of specimens are measured by instron. After coating each specimen(n=1), microstructure of specimens is observed using Scanning Electron Microscope(SEM). T-test was utilized to statistically assess the data. Results: The mean and standard deviation value of the flexural strength for standard schedule group are 578.15±57.48Mpa, that of speed schedule are 465.9±62.34Mpa. T-test showed significant differences in flexural strength between two zirconia specimen group which applied standard schedule and speed schedule respectively(p<0.05). Conclusion: The result of this study showed that the increase in sintering time led to increased grain size, and also to a positive effect on the flexural strength.

The moisture measurement of sintering material by the NIR simulator (근적외선 분광법을 이용한 simulator를 통한 소결원료 수분측정)

  • 이진우;정재인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1273-1275
    • /
    • 1996
  • Moisture measurements of s intering materials were performed using the simulator which can simulate various conditions taking place at the belt-conveyor of sintering process. The moisture sensor used in this experiment is NIR moisture meter(JE-330, KETT Electric Lab.). Using the simulator, we measured the moisture contents of sintering materials at different conditions. We found that the moisture content decreased as the rotation speed increased and the size of the sintering materials became smaller.

  • PDF

Selective Laser Sintering of Cu/Polyamide Mixed Powder (Cu/Polyamide 혼합분말의 선택적 레이저 소결)

  • 박흥일;이길근
    • Journal of Powder Materials
    • /
    • v.8 no.4
    • /
    • pp.239-244
    • /
    • 2001
  • To investigate the effect of process parameters on selective laser sintering of Cu/polyamide mixed powder, Cu/polyamide mixed powder was sintered by selective laser with changing laser power and scanning speed. The properties of sintered body were evaluated by measuring the density and tensile strength, and analysis of XRD, FT-Raman and microstructure. With an increase in the laser power, the density and ultimate tensile strength of sintered Cu/polyamide body increase and then decrease. The maximum values of the density and ultimate tensile strength were decreased with increasing laser scanning speed. These changes were concerned with the difference of irradiation energy of laser into the powder layer. It was considered that the change of the mechanical property of the sintered body with irradiation energy of laser is due to the changes of amount of copper particle and property of polyamide.

  • PDF

Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process

  • Herranz, G.;Levenfeld, B.;Varez, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.225-226
    • /
    • 2006
  • In this present investigation, Metal Injection Moulding (MIM) of M2 High Speed Steel (HSS) parts using a wax-High Density Polyethylene (HDPE) binder is shown. The elimination of organic binder was carried out by thermal debinding under inert atmosphere. In order to keep carbon in the sample that could improve the sintering process, incomplete debinding was performed between 450 and $600^{\circ}C$. The specimens were sintered at temperatures between 1210 and $1280^{\circ}C$ in high vacuum atmosphere, obtaining the 98% of the theoretical density. In the samples with higher residual carbon content, the sintering window was extended up to 20 degrees and the optimum temperature was lower.

  • PDF

Selective Laser Sintering of WC-Co Mixture (텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결)

  • 김광희;조셉비만
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.269-274
    • /
    • 2001
  • This paper describes the experimental results on direct selective laser sintering of WC-Co mixture. The experiments were carried out within an air, argon and nitrogen atmosphere. The main problem occurred during sintering within an air atmosphere was oxidation of WC-Co mixture. As the power of laser is increased and scanning speed is decreased, more severe oxidation takes place. Within an argon and nitrogen atmosphere the oxidation is reduced significantly. As the energy density is increased the thickness of the sintered layer is increased.

  • PDF