• 제목/요약/키워드: Speed sensorless vector control

검색결과 226건 처리시간 0.034초

Speed Control System of Induction Motor with Fuzzy-Sliding Mode Controller for Traction Applications

  • Kim, Duk-Heon;Ryoo, Hong-Je;Rim, Geun-Hie;Kim, Yong-Ju;Won, Chung-Yuen
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권1호
    • /
    • pp.52-58
    • /
    • 2003
  • The application of a sliding mode control for improving the dynamic response of an induction motor based speed control system is presented in this paper and provides attractive features, such as fast response, good transient performance, and insensitivity to variations in plant parameters and external disturbance. However, chattering is a difficult problem for which the sliding mode control is a popular solution. This paper presents a new fuzzy-sliding mode controller for a sensorless vector-controlled induction motor servo system to practically eliminate the chattering problem for traction applications. A DSP based implementation of the speed control system is employed. Experimental results are presented using a propulsion system simulator. The performance of the drive is shown to be practically free from chattering.

축소차수 관측기를 이용한 SPMSM의 V/f제어 (V/f Control of the SPMSM with stabilizing loop using a reduced order observer)

  • 박순제;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.962-963
    • /
    • 2015
  • This paper proposes a sensorless V/f control method of the interior mounted permanent magnet synchronous motor without damper winding. Arithmetic computation is simpler than vector control. And the lower cost price, dynamics and stability is guaranteed. When the loss of synchronization occurs with the load disturbances, the stability loop with a reduced order observer is applied quickly and accurately to improve the speed error.

  • PDF

RLS 부하 토오크 관측기를 가진 유도전동기의 센서리스 벡터제어 (Speed-Sensorless Vector Controlled IMs with RLS Torque Observer)

  • 김윤호;국윤상;홍익표;최창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2107-2109
    • /
    • 1997
  • Speed sensors are required for the vector control of induction motors. These sensors reduce the sturdiness of the system and make it expensive. Therefore, a drive system without speed sensors is required. Also, the rotor inertia constant, the damping constant and the disturbed load torque of the IM are estimated by the RLS estimator and a torque observer. Then the observed disturbance torque is fed forward to increase the robustness of the IM speed drive.

  • PDF

인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시 (Speed Sensorless Torque Monitoring On CNC Lathe Using Internet)

  • 홍익준;권원태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.467-470
    • /
    • 2002
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel is monitoring them. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using internet is suggested. The torque of vector controlled induction motor is estimated without speed measuring sensor. Only stator currents are measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. Mechanical part of the machine tool is also reconstructed using the data obtained from preliminary experiments. Torque of the spindle induction motor is well monitored on the client computers with 3% error range under various cutting conditions.

  • PDF

퍼지 제어기와 순시무효 전력을 이용한 IPMS모터의 Sensorless 제어 (Sensorless Controller for a Interior Permanent Magnet Synchronous Motor based on a Fuzzy Controller and Instantaneous Reactive Power)

  • 강형석;정우택;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.175-177
    • /
    • 2005
  • An interior permanent magnet synchronous motor (IPMSM) is receiving increased attention for many industrial applications because of its high torque to inertia ratio, superior power density, and high efficiency. This paper presents algorithm for speed sensorless vector control based on a fuzzy controller and an instantaneous reactive power. Effectiveness of algorithm is confirmed by the experiments.

  • PDF

개선된 자속 추정기에 의한 유도 전동기의 센서리스 속도제어 (Sensorless Speed Control of Induction Motor with an Improved Rotor Flux Estimator)

  • 김종수;조시열;함형철;박근오;김성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.260-262
    • /
    • 1998
  • A new method of induction motor drive, which requires not shaft encoder, is presented. This system has both torque and speed controls that are performed by vector control. The scheme is on the basis of a rotor flux speed control, which is performed by torque producing current and rotor flux, derived from the stator voltages and currents. But, there is a problem with respect to the calculated rotor flux vector, which is an integrating operation by which the rotor induced voltage is converted into the rotor flux. The calculated rotor flux does not work so that it is unstable in initial operation, as motor speed approaches zero. For the proposed rotor flux estimator, a lag circuit is employed, to which both the motor-induced voltage and rotor flux command are imposed, and it is possible to calculate even a low frequency down to standstill. We show the validity of the proposed control method through several computer simulations.

  • PDF

저속영역에서 속도검출기가 없는 유도전동기의 강인성 적응제어 시스템 (Robust Adaptive Control System for Induction Motor Drive Without Speed Sensor at Low Speed)

  • 김민회
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.91-102
    • /
    • 1999
  • The paper describes a robust adaptive control algorithm for induction motor drive without speed sensor at low speed range. The control algorithm use only current sensors in a space vector pulse width modulation within loop control with rotor speed estimation and voltage source inverter. On-line rotor speed estimation is based on utilizing parallel model reference adaptive control system. MRAC of the modified flux model for flux and rotor speed estimator uses dual-adaptation mechanism, ${\omega}_r$ and ${\omega}_e$ scheme. The estimated flux components in the model can be compensated from the effects of offset errors on pure integrals. It can be compensated to the parameter variations and torque fluctuation with speed estimation in less then 10 rad/sec. In a simulation, the proposed induction motor control algorithm without speed sensor at very low speed range are shown to operate very well in spite of variable rotor time constant and fluctuating load without change the controller parameters. The suggested control strategy and estimation method have been validated by simulation study, and it proposed the designed system for the implementation using TI320C31 DSP/ASIC controller.

  • PDF

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

MRAS Based Speed Estimator for Sensorless Vector Control of a Linear Induction Motor with Improved Adaptation Mechanisms

  • Holakooie, Mohammad Hosein;Taheri, Asghar;Sharifian, Mohammad Bagher Bannae
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1274-1285
    • /
    • 2015
  • This paper deals with model reference adaptive system (MRAS) speed estimators based on a secondary flux for linear induction motors (LIMs). The operation of these estimators significantly depends on an adaptation mechanism. Fixed-gain PI controller is the most common adaptation mechanism that may fail to estimate the speed correctly in different conditions, such as variation in machine parameters and noisy environment. Two adaptation mechanisms are proposed to improve LIM drive system performance, particularly at very low speed. The first adaptation mechanism is based on fuzzy theory, and the second is obtained from an LIM mechanical model. Compared with a conventional PI controller, the proposed adaptation mechanisms have low sensitivity to both variations of machine parameters and noise. The optimum parameters of adaptation mechanisms are tuned using an offline method through chaotic optimization algorithm (COA) because no design criterion is given to provide these values. The efficiency of MRAS speed estimator is validated by both numerical simulation and real-time hardware-in-the-loop (HIL) implementations. Results indicate that the proposed adaptation mechanisms improve performance of MRAS speed estimator.

단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어에 관한 연구 (A Study on Speed Variable Proportional Resonant Current Controller of Single-Phase PMSM)

  • 이원석;황선환;박종원
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.954-960
    • /
    • 2020
  • 본 논문은 단상 영구자석 동기전동기의 속도 가변형 비례공진 전류제어 기법을 제안한다. 단상 영구자석 동기전동기는 전자기적 특성상 고정자 전류와 역기전력의 위상차에 따른 부토크 및 영토크가 발생하며 센서리스 운전 시 낮은 고정자 저항과 인덕턴스로 인해 과전류 제한이 필요하다. 이러한 조건하에서 전류제어를 위해 3상 교류 전동기에 사용되는 벡터 제어를 이용할 경우, 좌표변환, 역좌표변환 및 가상의 dq축 성분을 생성하는 과정이 필요하다. 하지만, 단상 영구자석 동기전동기의 자기적 특성을 고려하여 제안한 속도 가변형 비례공진 전류제어 기법은 3상 교류 전동기에 사용되는 좌표변환 과정이 필요하지 않다. 본 논문에서는 가변 비례공진 전류제어 기법을 이용하여 안정적인 기동 성능을 확인하며 일정 속도 도달 시 위치 센서 없이 단상 영구자석 동기전동기의 수학적 모델 기반 센서리스 제어로 제안한 전류제어 기법의 효용성을 다수의 실험을 통해 검증하였다.