• Title/Summary/Keyword: Speed sensorless vector control

Search Result 226, Processing Time 0.021 seconds

Current Model based SPMSM Sensorless Vector Control using Back Electro Motive Force Estimator (역기전력 추정기를 이용한 전류 모델 기반의 SPMSM 센서리스 벡터제어)

  • Lee, Jung-Hyo;Yu, Jae-Sung;Kong, Tae-Woong;Lee, Won-Chul;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.7-10
    • /
    • 2007
  • The current model based sensorless method has many benefits that it can be robust control for large load torque. However, this method should determine a coefficient of back electro motive force(back-emf). This coefficient is varied by load torque and speed. Also, the coefficient determining equation is not exist, so it is determined only by experiment. On the other hands, using only back-emf estimatior method can not drive in low speed area and it has weakness in load variation. For these problems, this paper suggests the hybrid sensorless method that mixes the back-emf estimator regarding saliency and the current based sensorless model. This estimator offers not only non-necessary coefficient for current sensorless model, but also wide speed area operating in no specific transition method.

  • PDF

Speed Sensorless Vector Control of High-Speed IM using Intelligent Control Algorithm (지능제어 알고리즘을 이용한 초고속 유도전동기의 속도 센서리스 제어)

  • Kim, Yun-Ho;Hong, Ik-Pyo;Lee, Byeong-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.426-430
    • /
    • 1999
  • In this paper, a speed sensorless algorithm for a high-speed induction motor is proposed. The proposed algorithm simply estimates rotor speed by integrating the deviation between the command current value of a controller and the real current value of the motor. To estimate rotor speed without a speed sensor, a fuzzy speed controller and a neural network speed estimator are applied. Computer simulation and implementation of the proposed system is described.

  • PDF

Sensorless Vector Control of IPMSM Drive with Adalptive Fuzzy Controller (적응 퍼지제어기에 의한 IPMSM 드라이브의 쎈서리스 벡터제어)

  • Kim Jong-Gwan;Park Byung-Sang;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.98-106
    • /
    • 2006
  • This paper proposes to position and speed control of interior Permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. Also, this paper develops a adaptive fuzzy controller based fuzzy logic control for high performance of PMSM drives. In the proposed system, fuzzy control is used to implement the direct controller as well as the adaptation mechanism. A Gopinath observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of IPMSM, that employs a d-q rotating reference frame attached to the rotor. A Gopinath observer is implemented to compute the speed and position feedback signal. The validity of the proposed scheme is confirmed by various response characteristics.

Wide-Range Sensorless Control for SPMSM Using an Improved Full-Order Flux Observer

  • Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.721-729
    • /
    • 2015
  • A sensorless control method was recently investigated in the robot and automation industry. This method can solve problems related to the rise of manufacturing costs and system volume. In a vector control method, the rotor position estimated in the sensorless control method is generally used. This study is based on a conventional full-order flux observer. The proposed full-order flux observer estimates both currents and fluxes. Estimated d- and q-axis currents and fluxes are used to estimate the rotor position. In selecting the gains, the proposed full-order flux observer substitutes gain k for the speed information in the denominator of the gain for fast convergence. Therefore, accurate speed control in a low-speed region can be obtained because gains do not influence the estimation of the rotor position. The stability of the proposed full-order flux observer is confirmed through a root-locus method, and the validity of the proposed observer is experimentally verified using a surface permanent-magnet synchronous motor.

Speed Sensorless Vector Control of Induction Motor Using Adaptive Control Method (적응 제어 기법을 이용한 유도전동기의 속도 센서리스 벡터 제어)

  • Kim, Bae-Sun;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2493-2495
    • /
    • 1999
  • This paper deals with the speed sensorless vector control of Induction motor using speed observer based on adaptive mathod. This system is modeled by using the system level simulator, Matlab/Simulink. The model consists of SVPWM Inverter Model. Induction Motor Model and speed obsever based on adaptive method. The results show the effectiveness of Matlab/Simulink in simulation of the Induction Motor.

  • PDF

Improved Direct Torque Control for Sensorless Matrix Converter Drives with Constant Switching Frequency and Torque Ripple Reduction

  • Lee Kyo-Beum;Blaabjerg Frede
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.113-123
    • /
    • 2006
  • In this paper, an improved direct torque control (DTC) method for sensorless matrix converter drives is proposed which enables to minimize torque ripple, to obtain unity input power factor, and to achieve good sensorless speed-control performance in the low speed operation, while maintaining constant switching frequency and fast torque dynamics. It is possible to combine the advantages of matrix converters with the advantages of the DTC strategy using space vector modulation and a flux deadbeat controller. To overcome the phase current distortion by the non-linearity of a matrix converter drive, the simple non-linearity compensation method using PQR power theory are presented in the proposed scheme. Experimental results are shown to illustrate the feasibility of the proposed strategy.

Speed Sensorless Vector Control of Induction Machine in the Field Weakening Region (약계자 영역에서 유도전동기의 속도센서리스 벡터제어)

  • Shin Myoung-Ho;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.405-408
    • /
    • 2001
  • This paper investigates the problem of the speed estimation of conventional speed sensorless stator flux-oriented induction machine drive in the field weakening region and proposes a new speed estimation scheme to estimate speed exactly in transients in the field weakening region. The error included in the estimated rotor speed is removed by not a low pass filter but Kalman filter.

  • PDF

Performance Improvement of Sensorless Vector Control for Induction Motor Drives Driven By Matrix Converter Using Non-Linearity Compensation and Disturbance Observer (비선형 모델링과 외란 관측기를 이용한 Matrix Converter로 구동되는 유도전동기 센서리스 벡터제어의 성능 개선)

  • Kyo-Beum Lee
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.500-508
    • /
    • 2004
  • This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation and disturbance observer. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new matrix converter modeling. The lumped disturbances such as parameter variation and load disturbance of the system are estimated by the radial basis function network (RBFN). An adaptive observer is also employed to bring better responses at the low speed operation. Experimental results are shown to illustrate the performance of the proposed system.

Parameter Estimation for Vector Control of Induction Motors without Speed Sensors (속도센서 없는 유도전동기 백터제어 시스템의 파라메타 추정)

  • Kim, Sang-Uk;Kwon, Young-Gil;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2088-2090
    • /
    • 1997
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification. The proposed adaptive algorithm for rotor resistance estimation in the synchronous reference frame is applied by sliding mode current controller satisfing persistent excitation(PE) condition. Adaptive flux observer is here used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verify the validity of the proposed algorithm.

  • PDF

Speed Sensorless Vector Control an Induction Motor using Neural Network Speed Estimation (신경 회로망 속도 추정을 이용한 유도 전동기의 속도 센서리스 벡터 제어)

  • Kim, Seong-Hwan;Park, Tae-Sik;Yoon, Ji-Yoon;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2094-2096
    • /
    • 1998
  • In this paper, a new speed estimation method using neural networks is proposed and speed sensorless vector control is realized with the estimated speed. The effectiveness and the usefulness of the proposed algorithms are thoroughly verified with the experiments on the fully-digitalized 2.2kW induction motor drive systems.

  • PDF