• Title/Summary/Keyword: Speed overshoot

Search Result 173, Processing Time 0.028 seconds

The Model-Following Robust Controller Design for the Vector-Controlled Induction Motor (벡터제어 유도전동기의 모델추종 견실제어기 설계)

  • Chi Hwan Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.93-101
    • /
    • 1993
  • The transfer function of vector-controlled induction motor is represented along with both unstructured and structured uncertainty such as the error of rotor time constant and current ripple. The low-pass-filter behavior of a magnetizing inductance gets rid of unstructured uncertainty in the transfer function. The robust controller to compensate variation of the transfer function is designed using simple P-I linear controllers. The coefficients of speed PI controller are determined from an overshoot and a rising time of system and the coefficients of model-following PI controller are obtained using the solution of Riccati equation of LQR control in the state space equation of the error system. Experimental results with the DSP-based model-following robust controller are shown a good robustness against the structured uncertainty of the motor.

  • PDF

A Study of Control Algorithm for Propulsion System (열차 추진제어장치의 알고리즘에 관한 연구)

  • Choi, Jae-Ho;Kim, Hyung-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.51-56
    • /
    • 2007
  • In this paper, control schemes are developed for a propulsion system(Converter/Inverter) in electrical train. A robust controller for PWM converter is proposed. The converter controller consists of a PI controller for DC output voltage and a current controller using error-space approach for maintaining the sinusoidal current waveform and unity power factor. This proposed method is based on characteristic ratio assignment(CRA) method which has the advantage to design the optimal gain to meet the referenced response and overshoot within the limit range. Inverter system is controlled by vector control and slip frequency control. At low speed region, vector control scheme is applied to control instantaneous torque and slip frequency control is performed under overmodulation region and one pulse mode. Because output voltage of converter contains harmonics ripple at twice input ac line frequency, control scheme is developed to reduce the pulsating torque current. The performance of propulsion system will be verified by simulation and prototype experimental results.

A Study on Development of Intelligent AC Servo Control Drive (지능형 AC 서보 제어드라이브의 개발에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2132-2134
    • /
    • 2001
  • We propose an Tabu search changing neighborhood solution's range to be searched each iteration according to an objective function. It is applied for designing the scaling factors of Fuzzy Logic Controller (FLC) using the proposed Tabu search. We apply it to the speed control of AC Servomotor to evaluate the usefulness of the proposed method. As a result of the computer simulation, the FLC shows the better performance than PI controller in terms of overshoot and settling time.

  • PDF

Experiments on Buckling Characteristics of Strain Energy Hinges for Solar Array Deployment (인공위성 태양전지판 전개에 사용되는 변형 에너지 힌지의 좌굴특성 실험)

  • Heo, Seok;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.558-562
    • /
    • 2000
  • This research is concerned with the experiments on buckling characteristics of strain energy hinge(SEH) for solar arrays. The dynamic characteristics of the strain energy hinge is very important since it affects the shape and speed of the solar array deployment. The rapid deployment results in overshoot and undesirable residual vibrations. In this study, we carry out a series of buckling experiments to identify the dynamic characteristics of the SEH, which is made of strip measures. Buckling tests were done on the single-plate, double-plate and triple-plate SEH and VSEH. The experimental results show that the SEH has a very complex buckling behavior which can not be coped with theoretically. The modeling problem of the SEH is also discussed.

  • PDF

Vibration Control of Flexible Manipulator (유연한 조작기의 진동 제어)

  • Bae, Keon-Hyo;Lee, Jae-Won;Joo, Hae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.163-169
    • /
    • 1993
  • A flexible manipulator can move in the high speed even with the small driving torque. The dymanic equations of flexible manipulator which include 2 vibrational modes are derived using the clamped-free boundary condition. Simulation results of the 6th order model are well matched with experimental results. The hub angle of the flexible mainpulator can be controlled without vibration of the beam by the feedback of both hub angle and strain. The overshoot of the hub angle in the step response is reduced without sacrificing the rise time using the cycloidal function instead of the step function as the referenmce input.

  • PDF

Reinforcement learning-based control with application to the once-through steam generator system

  • Cheng Li;Ren Yu;Wenmin Yu;Tianshu Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3515-3524
    • /
    • 2023
  • A reinforcement learning framework is proposed for the control problem of outlet steam pressure of the once-through steam generator(OTSG) in this paper. The double-layer controller using Proximal Policy Optimization(PPO) algorithm is applied in the control structure of the OTSG. The PPO algorithm can train the neural networks continuously according to the process of interaction with the environment and then the trained controller can realize better control for the OTSG. Meanwhile, reinforcement learning has the characteristic of difficult application in real-world objects, this paper proposes an innovative pretraining method to solve this problem. The difficulty in the application of reinforcement learning lies in training. The optimal strategy of each step is summed up through trial and error, and the training cost is very high. In this paper, the LSTM model is adopted as the training environment for pretraining, which saves training time and improves efficiency. The experimental results show that this method can realize the self-adjustment of control parameters under various working conditions, and the control effect has the advantages of small overshoot, fast stabilization speed, and strong adaptive ability.

A Study on The Synchronous Control of Dual Electric Propulsion System Based on the Coupling Structure (커플링구조에 기초한 전기추진시스템의 동기제어에 관한 연구)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, the synchronous control system is designed to restrain the speed difference generated between two propellers, namely, synchronous error in a dual electric propulsion system of unmanned surface vehicle, fish finder boat, etc. The control system based on coupling structure is composed of pre-filters and speed controllers for each propulsion system and a synchronous controller cross-coupled between two propulsion systems. The pre-filter and speed controller are designed in order that the propulsion system may follow the speed reference without overshoot and input saturation. And the synchronous controller is designed in consideration of damping and quickness of the synchronous controller system after analyzing effect of the skew disturbance and mismatched dynamic characteristics on synchronous error. Finally, the simulation results show that the designed control system is effective for elimination of synchronous error.

A Study on the Design of the Optimal Control System for Electric Driving Digital Governor (전기구동방식 디지털 가버너의 최적제어계 설계에 관한 연구)

  • Kim, Seong-Hwan;Ra, Jin-Hong;Yang, Ju-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.88-100
    • /
    • 1990
  • Since sea state changes engine load instantaneously, the speed governing apparatus is essential for marine engine to maintain constant speed regardless of the load. As governing apparatuses, mechanical, pneumatic, and electric governors have been employed. But, recently, according to the introduction of low speed-ling stroke engines to increase thermal efficiency, the development of governor which has better response characteristics is requisite. In this paper, to design the governor that meets above requirement, author made a performance test for the existing PID control digital governor with the aid of computer simulation, and investigated digital governor applying the optimal control algorithm, then, executed computer simulation by the same way. As the result of simulations, found that the former let engine have large overshoot and long settling time at low speed, on the other hand, the latter made engine have better response. If we design and invent a good observer for delay time element so that the optimal control theory can be applied, better governor will be expected.

  • PDF

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

The Synchronous Control System Design of a Dual Electric Propulsion System for Small Boats (소형 선박용 듀얼 전기추진시스템의 동기제어시스템 설계)

  • Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2017
  • Recently, electric propulsion systems are used for unmanned surface vehicle, fish finder boat, etc. Some of these propulsion systems can be constructed of two electric motors and propellers for advanced impellent force. In this case, the speed difference generated between two propellers, namely, the synchronous error has a bad influence on the energy efficiency and course error. In this study, a synchronous control system is designed to restrain synchronous error caused by disturbance and mismatched dynamic characteristics. The control system is composed of the reference model, pre-filters, speed controllers, and synchronous controllers. The reference model is used for calculating the decoupled synchronous error and control input for each propulsion system. The pre-filters and speed controllers are designed in order that the propulsion system may follow the reference signal without overshoot and input saturation. And the synchronous controllers are designed from the viewpoint of stable and quick synchronization through root locus mothed approach. Finally, the simulation results show that the designed control system is effective for the disturbance.