• Title/Summary/Keyword: Speed of Tool Feed

Search Result 343, Processing Time 0.02 seconds

A study on optimal cutting conditions of MCD or NCD coated ball end-mills for finishing (MCD 및 NCD 코팅 볼 엔드밀의 정삭가공에서의 최적절삭조건에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2022
  • Recently, several studies are being conducted to achieve a curvature of 180° or more for the edge of the display glass. The thermocompression molding process is applied to the manufacture of curved glass, and high hardness G5 graphite is used as the mold material to withstand the impact applied to the mold. G5 graphite has high hardness and strong brittleness, which makes tool wear and surface damage easy during machining. Therefore, the demand for diamond-coated tools with good mechanical properties is increasing in the G5 machining field. In this study, the optimal cutting conditions and machinability of a nanodiamond (NCD) coated ball end mill being developed by a tool manufacturer were analyzed and evaluated. For this purpose, the same test was performed on the microdiamond (MCD) coated ball end mill and compared together. In summary, the machinability of MCD and NCD coated tools showed better cutting performance at a cutting speed of 282 m/min, a feed rate of 1,400 mm/min, and a radial depth of cut of 0.08 to 0.1 mm.

A Study on the Characteristics of Cutting for A16061-T6 (A16061-T6재의 절삭가공 특성에 관한 연구)

  • 강상도;채왕석;김경우;김우순;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.202-208
    • /
    • 2003
  • This study carried out a cutting experiment on Duralumin A16061-76, which is light but strong and highly anticorrosive, so recently popular as a lightweight material, by changing cutting conditions and alternating 4 insert tips, and examined the effect of each insert tip on cutting force at certain cutting conditions, the measurements of the coarseness of processed surfaces roughness, and the chip workability. The 1311owing conclusions were drawn from the results. Cutting force for cutting tool is when insert tips were alternated at each cutting condition, the cutting force of cutting tools was highest then CBN tools were use(1 next by Ceramic tools, Cermet tools, and WC tools. Therefore, WC tools are considered most suitable for cutting Duralumin A16061-T6. Surface roughness as for the coarseness of surfaces according to insert tips applied to Duralumin A16061-T6 under the cutting condition of depth of cut below 1mm, feed rate below 0.24mm/rev and cutting speed over 100m/min the coarseness of material surface roghness appeared to be finest when WC tools were used, next by Ceramic tools, Cermet tools, and CBN tools.

  • PDF

Analysis of Tooth Profile Accuracy of Enveloping Worm Thread Depending on End Mill Tool Shape (장구형 웜 나사의 절삭 엔드밀 공구 형상에 따른 치형 정밀도 분석)

  • Kang, S.J.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.183-189
    • /
    • 2019
  • Cylindrical worm reducers are generally used in various fields and forms throughout the industry, and demand is increasing due to their role as an integral part of the industry. Market trends require high-load, high-precision components, and small-sized reducers with large loads. When using a cylindrical worm reducer, a reducer designed with a reduced center distance while maintaining the same output torque results in gear wear. To overcome this difficulty, an enveloping worm gear reducer is introduced and studied. In this paper, three types of end mill tools are used to evaluate the tooth profile accuracy for each tool shape during machining of the tooth profile for a non-developed surface worm thread. The effect of the endmill shape on the accuracy of the tooth profile was analyzed by performing 3D modeling of the surrounding worm tooth profile based on the Hindley method. In this study, we analyzed tooth profile accuracy, tooth surface roughness, and tooth surface machining time, etc. Through the study, efficient machining conditions for the enveloping worm gears and the influence of parameters on the process were presented.

A Study on the Machining Characteristics of Prototype of Roller Gear Cams (롤러 기어 캠의 시제품 가공특성에 관한 연구)

  • Kim, Jin-Su;Kang, Seong-Ki;Lee, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-67
    • /
    • 2012
  • In the study, the effect grinding condition on the workpiece arithmetical average roughness(Ra) to 10 steps leading to cutting each section with the spindle rotational speed 8000rpm and feed rate 150mm/min of grinding in GC(green silicon carbide) grinding processing after heat treatment and non heat treatment of SCM415 material. Also the following conclusions were obtained analysis of stress distribution displacement and finite elements method(FEM) on assemble parts with 3+2 axis simultaneous control through grinding and gave a load 11kg on ATC arm both sides gave a load of 11kg. For the centerline average roughness(Ra) in the heat and non-heat treatment work pieces, which were appeared the most favorable in the fifth section were $0.511{\mu}m$ and $0.514{\mu}m$, that were shown in the near the straight line section was the smallest deformation of curve. In addition, the bad surface roughness appeared on the path is too long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

Improvement of Surface Roughness by the Cutting Speed Control for Turning Operation (선삭에서 절삭 속도 제어를 통한 표면 거칠기 향상)

  • Choi, Jong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.23-30
    • /
    • 2008
  • As a basic machining process, turning is a widely used machining process in which a single-point cutting tool removes material from the surface of a rotating material. A common method of evaluating machining performance is to measure the surface roughness. In a turning operation, it is important to select cutting conditions for achieving high cutting performance. As a rule, cutting conditions can be classified into feed rate, depth of cut and insert radius. While cutting process even though cutting conditions are optimized, the average roughness can be deterioration due to wear of the cutting tool edge. In this study, the aim is to maintain the average roughness even though the cutting condition is irregularly changing within the predictable range due to the working environment. First, the surface roughness model influenced by cutting conditions is constructed based on the experimental results in a turning operation, Second, applying the sliding mode control theory to the turning operation model which is composed of the surface roughness model and the motor transfer function, the surface roughness is closed to the desired value. Finally, the effectiveness of this approach is demonstrated through the computer simulation.

  • PDF

HVOF Spray Coating of Co-alloy(T800) for the Improvement of durability of High Speed Spindle (초고속 회전체의 내구성향상을 위한 Co-alloy(T800)의 초고속 용사코팅)

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Park, Byung-Chul;Chun, Hui-Gon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.32-37
    • /
    • 2006
  • Micron size Co-alloy(T800) powder was coated on Inconel 718 by HVOF thermal spraying for the studies of the improvement of durability of high speed spindle by using Taguchi program for the parameters of spray distance, flow rates of hydrogen and oxygen and powder feed rate. The optimal coating process was determined by the studies of coating properties such as micro-structure, porosity, surface roughness and micro hardness. Friction and wear behaviors of coatings were investigated by sliding wear test at room temperature and $1000^{\circ}F(538^{\circ}C)$. At both room temperature and $538^{\circ}C$ the sliding wear debris and friction coefficients of the coating were drastically reduced compared with the surface of non-coated parent material. This shows that Co-alloy powder coating is highly recommendable for the durability improvement surface coating of high speed air-bearing spindle. At high temperature wear traces and friction coefficients of both coating and non-coating were drastically reduced compared with those of room temperature since the brittle oxides were formed easily on the surface, and the brittle oxide phases were attrited by the reciprocating sliding wear according to the complicated mixed wear mechanisms These oxide particles, partially melts and the melts play role as lubricant and reduce the wear and friction coefficient. This also shows that Co-alloy powder coating is highly recommendable far the durability improvement surface coating on the surface vulnerable to frictional heat such as high speed spindles.

Model-based process control for precision CNC machining for space optical materials

  • Han, Jeong-yeol;Kim, Sug-whan;Kim, Keun-hee;Kim, Hyun-bae;Kim, Dae-wook;Kim, Ju-whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.26-26
    • /
    • 2003
  • During fabrication process for the large space optical surfaces, the traditional bound abrasive grinding with bronze bond cupped diamond wheel tools leaves the machine marks and the subsurface damage to be removed by subsequent loose abrasive lapping. We explored a new grinding technique for efficient quantitative control of precision CNC grinding for space optics materials such as Zerodur. The facility used is a NANOFORM-600 diamond turning machine with a custom grinding module and a range of resin bond diamond tools. The machining parameters such as grit number, tool rotation speed, work-piece rotation speed, depth of cut and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis methods. The effectiveness of the grinding prediction model was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment details, the results and implications are presented.

  • PDF

The Optimization Analysis for the Selection of Cutting Parameters in Turning Operation

  • Hong, Min-Sung;Lian, Zhe-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2001
  • This paper has focused on the Optimization of the cutting parameters for urning operation based on the Taguchi method. Four cutting parameters. nemely, cutting speed, feed depth of cut and nose radius are optimized with consideration of the surface roughness. The design and analysis of experiments are conducted to study the performance characteristic. The effects of these parameters on the surface roughness have been investigated using signal-to-noise(S/N) ratio and analy-sis of variance(ANOVA). The experiments have been performed using coated tungsten carbide inserts without any cutting fluid. Experimental results illustrate the effectiveness of this approach.

  • PDF

Chip breakability evaluation in turning by an orthogonal array method (직교배열법에 의한 선삭가공시 칩절단성 평가)

  • 배병중;박태준;양승한;이영문
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.279-284
    • /
    • 2000
  • The object of this paper is to evaluate the chip breakability using the experimental equation of surface roughness, which is developed in turning by an orthogonal array method. L$\sub$9/(3$^4$) orthogonal array method, one of fractional factorial design has been used to study effects of main cutting parameters such as cutting speed, feed rate and depth of cut, on the surface roughness. The evaluation of chip breakability is used the chip breaking index(C$\sub$B/), non-dimensional parameter. And the analysis of variance (ANOYA)-test has been used to check the significance of cutting parameters. Using the result of ANOYA-test, the experimental equation of chip breakability, which consists of significant cutting parameters, has been developed. The coefficient of determination of this equation is 0.866.

  • PDF

Development of Array-Lens for Multi-Color Chip-LED (Multi-Color Chip-LED용 어레이 렌즈 개발에 관한 연구)

  • Choi, Byung-Ky;Lee, Dong-Gil;Jang, Kyeung-Cheun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.50-55
    • /
    • 2007
  • The purpose of this research is to enhance the luminance of the LED and to improve the implementation of color by mounting an array lens on the LED without special technology in process. The workmanship of key components considering the economical efficiency and the injection molding technology for high quality of the product are essential to achieve it. In this paper, the mold was computer-aided was designed and manufactured by CAM software (NX4) and high speed machining center. the applied final machining conditions were 3,000-5,000mm/min feed speed, 15,000-25,000rpm and ${\Phi}0.3mm$ ball end-mill. And the Flow analysis was performed using the mold flow software(MPI) in order to get uniformity of resin. Injection conditions acquired by the flow analysis and the injection experiment are as follows. The cylinder temperature is $220-260^{\circ}C$, the mold temperature is $70-80^{\circ}C$, the injection time is about 1.2sec, the injection pressure and velocity is each 7.8-14.7Mpa, and the injection velocity is 0.8-1.2m/sec.