하드웨어 가속기를 사용하여 다양한 실시간 계산을 하는 여러 공학/과학 분야에서 많은 경우에 FPGA와 호스트 컴퓨터를 PCI express(PCIe)로 연결하는 시스템 구성이 요구된다. 하지만, 초당 수 기가바이트의 데이터를 주고 받는 고속 인터페이스인 PCIe의 구현은 하드웨어 가속기 개발의 가장 큰 어려움 중에 하나이다. 상용 제품과 논문을 통해서 여러 PCIe IP 솔루션을 찾을 수 있지만, 고가의 비용을 지불해서 구매하거나, 별도의 시간과 노력을 투자해서 PCIe를 구현해야 한다. 따라서, Xilinx사의 FPGA를 기반의 하드웨어 가속기를 구현할 때는 Xilinx사에서 무료로 제공 하는 XDMA PCIe IP를 사용하는 것이 개발 기간 및 비용 단축을 위한 최선의 선택이 될 수 있다. 이러한 이유로 본 논문에서는 Xilinx사의 PCIe IP의 성능 평가를 위해 Zynq-7000 FPGA개발보드와 Windows 10 호스트 컴퓨터로 평가 시스템을 구성하고, PCIe IP의 구성 파라미터에 의한 전송 속도 성능 변화에 대해 평가 분석한다.
홀로그램의 생성을 위한 연산은 포인트 클라우드의 규모에 따라 연산량이 기하급수적으로 증가하기 때문에 최근에는 다중의 GPU를 기반으로 CUDA 또는 OpenCL 라이브러리를 활용한 병렬처리가 이루어지고 있다. GPU기반의 병렬처리를 위한 CUDA 커널은 GPU의 코어 개수와 메모리 크기를 고려하여 쓰레드(thread), 블록(block), 그리드(grid)를 구성해야 하며, 다중 GPU 환경인 경우 GPU의 개수에 따른 그리드, 블록, 또는 쓰레드 단위의 분산처리가 필요하다. 본 논문에서는 CGH 생성에 대한 성능평가를 위해 포인트 클라우드의 포인트 개수를 10~1,000,000개 범위에서 점진적으로 증가시키면서 CPU, 단일 GPU, 다중 GPU 환경에서 연산 속도를 비교해 보았으며, 다중 GPU 환경에서 CGH(Computer Generated Hologram) 생성 연산을 가속화하기 위한 CUDA 기반의 병렬처리 과정에서 요구되는 메모리 구조 설계와 연산 방법을 제안한다.
심전도 신호는 위조가 불가능하며 양쪽 손목에서 신호를 간편히 취득할 수 있는 장점이 있다. 본 논문에서는 심전도 신호의 방향 정보를 이용해 커플링 이미지를 생성하고, 이를 이용한 개인 인식 방법을 제안한다. 제안하는 커플링 이미지는 정방향 심전도 신호와 R-peak를 기준으로 회전된 역방향 심전도 신호를 이용해 생성하며, 생성한 커플링 이미지는 개인별로 고유한 패턴과 명암을 나타낸다. 또한 같은 주기의 심전도 신호 연산을 통해 R-peak 영역 데이터가 증가하여 개인 인식 성능 향상이 가능하다. 생성한 커플링 이미지는 제안한 합성곱 신경망을 이용해 패턴 및 명암에 대한 특징을 추출하며, 네트워크 속도 향상을 위해 다수의 풀링층을 사용해 데이터 크기를 축소한다. 실험은 47명의 공개된 심전도 데이터를 이용하며, 공개된 네트워크 중 top-5 성능이 상위권인 5개 네트워크와 제안한 네트워크를 이용해 비교 실험을 진행한다. 실험 결과 제안한 네트워크의 개인인식 성능이 99.28%로 가장 높게 나타남에 따라, 제안한 커플링 이미지를 이용한 개인 인식 방법이 유효함을 확인하였다.
가스터빈엔진 고도시험설비 운용특성탐색 및 설비튜닝 연구와 유량/추력 측정방안 검증을 위한 엔진 시뮬레이션덕트 설계 연구를 수행하였다. 설비 운용특성 검증은 배압/추력 제어가 필요하므로 Spikecone type의 가변노즐을 적용하였으며, 유량검증용 ISO 쵸킹노즐의 추가장착이 가능토록 설계하였다. 시뮬레이션덕트 주유로 면적은 1D Sizing으로 결정하고, 노즐면적변화에 따른 시뮬레이션덕트 내부 유동특성은 1D/CFD 해석으로 조사하였으며, 해석결과로부터 설비운용특성 탐색 및 유량/추력 검증시험을 위한 공기공급부 시험조건을 도출하였다. Spike 노즐 구동부는 시험 전운용 구간에서 공력하중조건을 견디도록 모터, 리니어 볼스크류 등의 부품모델을 선정하였으며, 시험 시 10 mm/s의 이송속도가 가능하도록 설계하였다.
In this research, the effect of normal load, sliding velocity, and texture density on thefriction coefficient of surfaces micro-textured on AISI 4140 under paraffin oil lubrication were investigated. The predicted tribological behavior by numerical calculation can be serves as guidance for the designer during the machine development stage. Therefore, in this research friction coefficient prediction model based on response surface methodology (RSM), support vector machine (SVM), and artificial neural network (ANN) were developed. The experimental result shows that the variation of load, speed and texture density were influence the friction coefficient. The RSM, ANN and SVM model was successfully developed based on the experimental data. The ANN model can effectively predict the tribological characteristics of micro-textured AISI 4140 in paraffin oil lubrication condition compare to RSM and SVM.
비축 적외선 탐색기는 공력 가열에 의한 열 차폐 효과를 완화시키기 위해 대공 고속 유도탄의 노즈콘 측면에 장착된다. 탐색기 출력은 표적을 지속적으로 추적하기 위한 유도탄의 롤 기동이 관여되었을 때 더 이상 시선각속도로 간주할 수 없다. 본 논문에서는 2축 김발 위에 장착된 비축탐색기를 위한 시선각속도 계산 방식을 제안한다. 첫째로, 실제 시선각속도 방정식은 해석적으로 도출되지만 조준각 오차 변화율을 측정할 수 없어 구현할 수 없다. 그에 따라 조준각 오차 변화율을 획득하기 위해 1차 지연 근사화를 제안한다. 제안한 시선각속도 계산 방식은 유도탄과 김발의 회전을 고려하여 커플링 효과를 보상할 수 있다. 제안한 방식의 성능을 비선형 6 자유도 시뮬레이션을 통해 검증하였다.
This paper proposes a methodology for gantry route optimization in order to maximize the productivity of a odd-type surface mount device (SMD). A odd-type SMD is a machine that uses a gantry to mount electronic components on the placement point of a printed circuit board (PCB). The gantry needs a nozzle to move its electronic components. There is a suitability between the nozzle and the electronic component, and the mounting speed varies depending on the suitability. When it is difficult for the nozzle to adsorb electronic components, nozzle exchange is performed, and nozzle exchange takes a certain amount of time. The gantry route optimization problem is divided into the mounting order on PCB and the allocation of nozzles and electronic components to the gantry. Nozzle and electronic component allocation minimized the time incurred by nozzle exchange and nozzle-to-electronic component compatibility by using an mixed integer programming method. Sequence of mounting points on PCB minimizes travel time by using the branch-and-price method. Experimental data was made by randomly picking the location of the mounting point on a PCB of 800mm in width and 800mm in length. The number of mounting points is divided into 25, 50, 75, and 100, and experiments are conducted according to the number of types of electronic components, number of nozzle types, and suitability between nozzles and electronic components, respectively. Because the experimental data are random, the calculation time is not constant, but it is confirmed that the gantry route is found within a reasonable time.
아날로그 홀로그램과 동등 이상의 대면적과 넓은 시야각을 가진 Computer generated hologram(CGH)을 생성하기 위해서는 매우 많은 픽셀 수가 요구된다. 이로 인해 고해상도의 CGH를 생성하기 위해서는 높은 성능의 연산장치를 바탕으로도 오랜 연산 시간이 필요한 문제점이 존재한다. 이를 해결하기 위해 본 논문에서는 미리 계산된 저해상도 CGH를 배열한 후 평행이동된 오목 렌즈 함수를 곱해주는 것을 통하여 고해상도 CGH를 생성하는 기법을 제안한다. Point cloud 방식으로 기록된 0.1기가픽셀의 CGH를 계산하고, 여기에 제안된 기법을 도입하여 2.5기가픽셀의 CGH를 매우 빠른 속도로 생성할 수 있었으며, 이렇게 생성된 CGH를 실험을 통하여 기록한 이미지상이 정상적으로 복원되는 것을 확인하였다.
최근 다양한 분야에서 뛰어난 성능을 나타내는 Convolutional Neural Network(CNN)모델을 모바일 기기에서 사용하기 위한 다양한 연구가 진행되고 있다. 기존의 CNN 모델은 모바일 장비에서 사용하기에는 가중치의 크기가 크고 연산복잡도가 높다는 문제점이 있다. 이를 해결하기 위해 가중치의 표현 비트를 낮추는 가중치 양자화를 포함한 여러 경량화 방법들이 등장하였다. 많은 방법들이 다양한 모델에서 적은 정확도 손실과 높은 압축률을 나타냈지만, 대부분의 압축 모델들은 정확도 손실을 복구하기 위한 재학습 과정을 포함시켰다. 재학습 과정은 압축된 모델의 정확도 손실을 최소화하지만 많은 시간과 데이터를 필요로 하는 작업이다. Weight Quantization이후 각 층의 가중치는 정수형 행렬로 나타나는데 이는 이미지의 형태와 유사하다. 본 논문에서는 Weight Quantization이후 각 층의 정수 가중치 행렬을 이미지의 형태로 비디오 코덱을 사용하여 압축하는 방법을 제안한다. 제안하는 방법의 성능을 검증하기 위해 ImageNet과 Places365 데이터 셋으로 학습된 VGG16, Resnet50, Resnet18모델에 실험을 진행하였다. 그 결과 다양한 모델에서 2%이하의 정확도 손실과 높은 압축 효율을 달성했다. 또한, 재학습 과정을 제외한 압축방법인 No Fine-tuning Pruning(NFP)와 ThiNet과의 성능비교 결과 2배 이상의 압축효율이 있음을 검증했다.
본 논문에서는 블랙 아이스를 정확하게 인식하고 도로 노면 정보를 운전자에게 미리 알려줘서 속도를 제어하고 예방 조치를 취할 수 있도록 하기 위해 열화 도로 영상을 기반으로 블랙 아이스 검출하기 위해 lightweight 네트워크를 제안한다. 전이학습을 이용하여 블랙 아이스 인식 실험을 하였고, 블랙 아이스 인식의 정확도 향상을 위해 MobileNetV2 기반의 개선된 lightweight 네트워크를 개발하였다. 계산량을 줄이기 위해 Linear Bottleneck 및 Inverted Residuals를 활용하여 4개의 Bottleneck 그룹을 사용하고 모델의 인식률 향상을 위해 각 Bottleneck 그룹에 3×3 컨볼루션 레이어를 연결하여 지역적 특징 추출을 강화하고 특징 맵의 수를 늘렸다. 마지막으로 구축된 블랙 아이스 데이터 세트 대상으로 블랙 아이스 인식 실험을 진행하였으며, 제안된 모델은 블랙 아이스에 대해 99.07%의 정확한 인식률을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.