• Title/Summary/Keyword: Speed Estimator

Search Result 262, Processing Time 0.025 seconds

Design of a Fast Multi-Reference Frame Integer Motion Estimator for H.264/AVC

  • Byun, Juwon;Kim, Jaeseok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.430-442
    • /
    • 2013
  • This paper presents a fast multi-reference frame integer motion estimator for H.264/AVC. The proposed system uses the previously proposed fast multi-reference frame algorithm. The previously proposed algorithm executes a full search area motion estimation in reference frames 0 and 1. After that, the search areas of motion estimation in reference frames 2, 3 and 4 are minimized by a linear relationship between the motion vector and the distances from the current frame to the reference frames. For hardware implementation, the modified algorithm optimizes the search area, reduces the overlapping search area and modifies a division equation. Because the search area is reduced, the amount of computation is reduced by 58.7%. In experimental results, the modified algorithm shows an increase of bit-rate in 0.36% when compared with the five reference frame standard. The pipeline structure and the memory controller are also adopted for real-time video encoding. The proposed system is implemented using 0.13 um CMOS technology, and the gate count is 1089K with 6.50 KB of internal SRAM. It can encode a Full HD video ($1920{\times}1080P@30Hz$) in real-time at a 135 MHz clock speed with 5 reference frames.

Phase Synchronization Algorithm for High-speed Satellite Communications (고속 위성 통신용 위상 동기 방식)

  • ;Duc-Long
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.836-843
    • /
    • 2004
  • In per survivor processing (PSP) has a better performance than conventional phase offset estimators. But itsdefect is that it has a high complexity. In this paper, we propose the adaptive reduced state estimator (ARSE) algorithm not only to reduce the complexity, but also to have a good performance. The main principle of ARSE is changing the number of estimators dynamically during the decoding process according to the channel condition.

Rapid Acquisition of m-sequence Signals by Sequential Estimation with Flexible Structure (가변구조를 갖는 순차 예측 방법을 이용한 m 계열 신호의 고속 포착)

  • 현광민;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7B
    • /
    • pp.664-672
    • /
    • 2002
  • This paper analyzes a sequential estimator with flexible structure for rapid acquisition of the m-sequence signals. If the received PN chips stored in the estimator's internal registers as initial loading values include one error, this chip with error can be corrected through multiple local PN code generators to achieve high-speed acquisition performance. Hamming distance between regenerated local PN codes from the proposed system and received PN code is compared with given threshold to choose a possible correct path and to declare success of the code acquisition. Using signal flow graph, average acquisition time that depends on detection and false alarm probability is calculated. By modifying generally used matched filter structure for PN code acquisition, the proposed system provides flexible structure and rapid acquisition process.

An Optimization Algorithm for Blind Channel Equalizer Using Signal Estimation Reliability (신호 추정 신뢰도를 활용한 블라인드 채널 등화기 최적화 알고리즘)

  • Oh, Kil Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.318-324
    • /
    • 2013
  • For blind channel equalization, the reliability of signal estimate determines the convergence speed and steady-state performance of the equalizer. Therefore the nonlinear estimator and reference signal being used in signal estimate should be chosen appropriately. In this paper, to increase the reliability of the signal estimate, two errors were obtained by applying coarse signal points and dense signal points respectively to signal estimate, the relative reliabilities of two errors were calculated, then the equalizer was adapted deferentially utilizing the reliabilities. At this point, by applying two errors alternately, two modes of operation were smoothly combined. Through computer simulations the proposed method was confirmed to achieve fast transient state convergence and low steady-state error compared to traditional methods.

Sparse Matrix Computation in Mixed Effects Model (희소행렬 계산과 혼합모형의 추론)

  • Son, Won;Park, Yong-Tae;Kim, Yu Kyeong;Lim, Johan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.281-288
    • /
    • 2015
  • In this paper, we study an approximate procedure to evaluate a penalized maximum likelihood estimator (MLE) for a mixed effects model. The procedure approximates the Hessian matrix of the penalized MLE with a structured sparse matrix or an arrowhead type matrix to speed its computation. In this paper, we numerically investigate the gain in computation time as well as approximation error from the considered approximation procedure.

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

Development of Wind Speed Estimator for Wind Turbine Generation System (풍력발전 시스템을 위한 풍속 추정기 개발)

  • Kim, Byung-Moon;Kim, Sung-Ho;Song, Hwa-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.710-715
    • /
    • 2010
  • As wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. The wind speed has a huge impact on the dynamic response of wind turbine. For this purpose, many control algorithms are in need for a method to measure wind speed to increase performance. Unfortunately, no accurate measurement of the effective wind speed is online available from direct measurements, which means that it must be estimated in order to make such control methods applicable in practice. In this paper, a new method based on Kalman filter and artificial neural network is presented for the estimation of the effective wind speed. To verify the performance of the proposed scheme, some simulation studies are carried out.

Sensorless Vertor Control of PMSM using Neural Networks (신경회로망을 이용한 PMSM의 센서리스 벡터제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Kim, Jong-Gwan;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.240-243
    • /
    • 2003
  • Sensorless Vector control of the permanent magnet synchronous motor(PMSM) typically requires knowledge of the PMSM structure and parameters, which in some situations are not readily available or may be difficult to obtain. In this paper, by measuring the currents of the PMSM drive, a neural-network-based rotor position and speed estimation method for PMSM is described. Because the proposed estimator treats the estimated motor speed as the weights, it is possible to estimate motor speed to adapt back propagation algorithm with 2 layered neural network. The proposed control algorithm is applied to PMSM drive system. The operating characteristics controlled by neural networks control are examined in detail.

  • PDF

Performance Improvement of a PMSM Sensorless Control Algorithm Using a Stator Resistance Error Compensator in the Low Speed Region

  • Park, Nung-Seo;Jang, Min-Ho;Lee, Jee-Sang;Hong, Keum-Shik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.485-490
    • /
    • 2010
  • Sensorless control methods are generally used in motor control for home-appliances because of the material cost and manufactureing standard restrictions. The current model-based control algorithm is mainly used for PMSM sensorless control in the home-appliance industry. In this control method, the rotor position is estimated by using the d-axis and q-axis current errors between the real system and a motor model of the position estimator. As a result, the accuracy of the motor model parameters are critical in this control method. A mismatch of the PMSM parameters affects the speed and torque in low speed, steadystate responses. Rotor position errors are mainly caused by a mismatch of the stator resistance. In this paper, a stator resistance compensation algorithm is proposed to improve sensorless control performance. This algorithm is easy to implement and does not require a modification of the motor model or any special interruptions of the controller. The effectiveness of the proposed algorithm is verified through experimental results.

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.