• Title/Summary/Keyword: Speed Estimator

Search Result 262, Processing Time 0.026 seconds

Inertia and Coefficient of Friction Estimation of Electric Motor using Recursive Least-Mean-Square Method (순환 최소자승법을 이용한 전동기 관성과 마찰계수 추정)

  • Kim, Ji-Hye;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.311-316
    • /
    • 2007
  • This paper proposes the algorithm which estimates moment of the inertia and friction coefficient of friction for high performance speed control of electric motor. The proposed algorithm finds the moment of inertia and friction coefficient of friction by observing the speed error signal generated by the speed observer and using Recursive Least-Mean-Square method(RLS). By feedbacking the estimated inertia and estimated coefficient of friction to speed controller and full order speed observer, then the errors of the inertia and coefficient of friction and speed due to the inaccurate initial value are decreased. Inertia and coefficient of friction converge to the actual value within several times of speed changing. Simulation and actual experiment results are given to demonstrate the effectiveness of the proposed parameter estimator.

VEHICLE SPEED ESTIMATION BASED ON KALMAN FILTERING OF ACCELEROMETER AND WHEEL SPEED MEASUREMENTS

  • HWANG J. K.;UCHANSKI M.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.475-481
    • /
    • 2005
  • This paper deals with the algorithm of estimating the longitudinal speed of a braking vehicle using measurements from an accelerometer and a standard wheel speed sensor. We evolve speed estimation algorithms of increasing complexity and accuracy on the basis of experimental tests. A final speed estimation algorithm based on a Kalman filtering is developed to reduce measurement noise of the wheel speed sensor, error of the tire radius, and accelerometer bias. This developed algorithm can give peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

A Study on the Flux Estimation Simulator Application for the Induction Motor Speed Control (속도제어를 위한 유도전동기 자속추정 시뮬레이터 적용에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Gi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1289-1301
    • /
    • 2011
  • In this paper, flux estimation method at the Induction motor is applied to stability flux estimate of possibility in overall speed domain. angle operation has voltage and current and speed information using the Induction motor direct control method. Induction motor direct control is material to flux information. Exact flux estimation method to using current model flux estimator of low-speed domain and voltage model flux estimator of high-speed domain. Speed and current and flux controller using PI controller. And error of integral requital for add to Anti-Windup PI controller. Verified to performance of Current model Flux controller and voltage model flux controller using Matlab / Simulink. Analysis has parameter influence of direct vector control and indirect vector control at the Induction motor vector control. So, verified to minute control. Analyzed to simulation result and proof to validity of presented algorithm.

Sensorless Speed Control of Induction Motor using Current Compensation

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • A new method of induction motor drive, which requires neither shaft encoder nor speed estimator, is presented. The proposed scheme is based on decreasing current gap between a numerical model and an actual motor. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing the current difference. the rotor approaches to the model speed. that is. reference value. The indirect field orientation algorithm is employed for tracking the model currents. The performance of induction motor drives without speed sensor is generally characteristic of poorness at very low speed. However, in this system, it is possible to obtain good speed response in the extreme low speed range.

Sensorless Speed Control of Direct Current Motor using Current Error Compensation (전류오차보상에 의한 직류전동기의 센서리스 속도제어)

  • 함형철;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.930-936
    • /
    • 2003
  • A new method of direct current motor drive, which requires neither shaft encoder nor speed estimator, is presented. The proposed scheme is based on decreasing current gap between a numerical model and an actual motor. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing the current difference, the rotor approaches to the model speed, that is, reference value. The performance of direct current motor drives without speed sensor is generally poor at very low speed. However, in this system, it is possible to obtain good speed performance in the low speed range.

Speed-Sensorless Vector Control of an Induction Motor Using Recursive Least Square Algorithm (RLS 기법을 이용한 유도전동기의 속도센서없는 벡터제어)

  • Park, Tae-Sik;Kim, Seong-Hwan;Yu, Ji-Yun;Park, Gwi-Tae;Kim, Nam-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.139-143
    • /
    • 1999
  • This paper is on realization of the speed-sensorless vector control of an induction motor using the RLS(Recursive Least Square) algorithm. The speed estimator is including the RLS algorithm and a rotor flux observer. The RLS algorithm has speed and rotor time constant as parameter vectors and rotor flux observer is designed to have robustness to stator resistance variation and through the IP(Integral and Proportional) speed controller stable performance is obtained for estimating rotor speed. Finally the total algorithm are realized in induction motor drive system and its effectiveness is verified.

  • PDF

Absolute Vehicle Speed Estimation using Fuzzy Logic (퍼지로직을 이용한 차량절대속도 추정)

  • ;;J. K. Hedrick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.179-186
    • /
    • 2002
  • The absolute longitudinal speed of a vehicle is estimated by using vehicle acceleration data from an accelerometer and wheel speed data from standard 50-tooth antiknock braking system wheel speed sensors. An intuitive solution to this problem is, "When wheel slip is low, calculate absolute velocities from the wheel speeds; when wheel slip is high, calculate absolute velocity by integrating the accelerometer." Fuzzy logic is introduced to implement the above idea and a new algorithm of "modified velocities with step integration" is proposed. This algorithm is verified experimentally to estimate speed of a vehicle, and is also shown to estimate absolute longitudinal vehicle speed with a 6% worst-case error during a hard braking maneuver lasting three seconds.

Least Order Load Torque.Inertia Observer for Low Speed Drive of Motor Using (전동기 극저속 운전을 위한 최소차원 부하토크.관성 관측기)

  • Kim Young-Chun;Kim Eun-Gi;Cho Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.575-579
    • /
    • 2006
  • In this paper, an instantaneous speed observer with a reduced order is proposed to implement an indirect control for a motor with excellent dynamic stability and performance in a very low speed region. The proposed observer can estimate the instantaneous speed in very low speed region and simplify the system configuration by adopting an least order load torque-inertia observer to estimate the load torque and the motor speed. Simulation are carried out to illustrate the performance of the proposed estimator at very low speed.

  • PDF

A Speed Sensorless SPMSM Position Control System with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 SPMSM의 속도 제어 시스템)

  • Kim, Min-Ho;Kim, Nam-Hun;Kim, Dong-Hee;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.277-280
    • /
    • 2001
  • This paper presents a speed sensorless implementation of digital speed control system of Surface Permanent-Magnet Synchronous Motor(SPMSM) drives with a direct torque control(DTC). The system presented are stator flux and torque observer of stator flux feedback control model that inputs are current and voltage sensing of motor terminal with estimated rotor angle for a low speed operating area, two hysteresis band controllers, an optimal switching look-up table, rotor speed estimator, and IGBT voltage source inverter by using fully integrated control software. The developed speed sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw purposed servo drive SPMSM.

  • PDF

Speed Sensorless Vector Control for High Performance of Induction Motor (유도전동기의 고성능제어를 위한 속도센서리스 벡터제어)

  • Dong Hwa Chung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.37-46
    • /
    • 1993
  • Recently, the elimination of speed sensors has been one of the important requirement in vector control systems, because the speed sensor spoil the ruggedness and simplicity of induction motor. This paper proposes sensorless vector control for high performance of induction motor. The proposed vector control scheme is based on a rotor flux and speed which are calculated from the stator voltage and currents with improved flux estimator. The characteristics of vector control employing stator voltage and current generally deteriorate as the speed gets lower acause the calculated rotor flux depends on the stator resistance and it is difficult to calculate rotor flux at low speed of standstill. This new control system is robust with respect to variations of the stator resistance and it makes possible to calculated rotor flux at low speed of standstill. These feature are verified by the simulation results.

  • PDF