• 제목/요약/키워드: Speed Control Loop

검색결과 543건 처리시간 0.036초

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.

DSP를 사용한 브러시리스 DC 모터의 향상된 디지털 전류제어기 설계 (A Design of Improved Digital Controller of BLDC Motor Using DSP)

  • 하영석;안호균;박승규;이종주;김성환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1209-1211
    • /
    • 2001
  • Generally, the current controller is located inner the whole controller, so the characteristic of the current controller is important in controlling performance of the upper controller. A current control loop in motor control is designed so that it is 10 times faster than the speed control loop of the upper controller. Thus, the current controller with complex control algorithm is not proper. In this paper, the improved current controller using a conventional digital PI controller and feedforward controller for the brushless BC motor is designed.

  • PDF

고속인식이 가능한 무선인식 시스템에 관한 연구 (A Study of RFID System Enable to High Speed Recognition)

  • 윤상문;백선기;김윤집;박면규;이기서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.522-529
    • /
    • 2002
  • In this Paper, it has a proposal of the RFID(RFID : Radio Frequency Identification) system for high-speed recognition between the tag attached a mobile object moving high-speed and the static reader. It used 13.56MHz frequency at ISM band, and designed a reader in order to recognize a mobile object moving high-speed. It will be expected that RFID system enables a smooth railway signal control applying in railway system through the cyclic loop antenna.

  • PDF

토크를 물리량으로 가지는 적응제어 구조의 센서리스 벡터제어 (Adaptive Speed Identification for Sensorless Vector Control of Induction Motors with Torque)

  • 김도영;박철우;최병태;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.230-230
    • /
    • 2000
  • This paper describes a model reference adaptive system(MRAS) for speed control of vector-controlled induction motor without a speed sensor. The proposed approach is based on observing the instantaneous torque. The real torque is calculated by sensing stator current and estimated torque is calculated by stator current that is calculated by using estimated rotor speed. The speed estimation error is linearly proportional to error between real torque and estimated torque. The proposed feedback loop has linear component. Furthermore proposed method is robust to parameters variation. The effectiveness is verified by equation and simulation

  • PDF

직접토크제어 유도전동기 구동장치를 위한 퍼지이득조정 자속관측기 (Fuzzy Gain Scheduling Flux Observer for Direct Torque Controlled Induction Motor Drives)

  • 금원일;류지수;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.234-234
    • /
    • 2000
  • A direct torque control(DTC) based sensorless speed control system which employs a new closed loop flux observer is proposed. The flux observer takes an adaptive scheduling gains where motet speed is used as the scheduling variable. Adaptive nature comes from the fact that the estimated values of stator resistance and speed are included as observer parameters. The parameters of the PI controllers adopted in the adaptive law for the estimation of stator resistance and motor speed are determined by simple genetic algorithm. Simulation results in low speed region are given for comparison between proposed and conventional flux estimate scheme.

  • PDF

SRM의 고효율 구동을 위한 PLL 제어방식 (Design of SRM according to Design Parameters)

  • 김태형;오석규;안진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.985-987
    • /
    • 2004
  • Switched Reluctance Motor(SRM) drive system is known to provide good torque characteristics and high efficiency drive. However, speed variation caused by higher torque ripple is one of main drawback. The Phase-Locked Loop (PLL) technique in conjunction with dynamic dwell angle control has good speed regulation characteristics. In this paper, appropriate advance angle control for high efficiency drive and PLL technique for accurate speed control is proposed. A TMS320F240 DSP is used to realize this drive system. Test results show that the system has good dynamic and precise speed control ability as well as high efficiency.

  • PDF

Development of Speed Controller and its Application to a 680[MW] Rated Steam Turbine

  • Choi, In-Kyu;Woo, Joo-Hee
    • 조명전기설비학회논문지
    • /
    • 제22권11호
    • /
    • pp.30-35
    • /
    • 2008
  • An analog type turbine control system in a nuclear power plant in Korea was replaced by a digital type control system successfully. The turbine simulator was used to verify and validate the perfection of newly developed digital control system prior to its actual installation. In this paper, the newly developed turbine speed control system, ie. governor will be introduced together with how to simulate entire control loop. After that, we will compare the comparison of simulation result in laboratory with pre startup simulation result. Eventually the performance of actual operation result was testified.

전기자동차 용 전동식 컴프레서를 위한 스위치드 릴럭턴스 모터의 센서리스 제어 (Sensorless control of Switched Reluctance Motor for Electric AC Compressors of Electrical Vehicles)

  • 전용희;김재혁
    • 조명전기설비학회논문지
    • /
    • 제28권10호
    • /
    • pp.37-42
    • /
    • 2014
  • This paper discusses study of sensorless control of a variable speed switched reluctance motor (SRM) for electric AC compressors on electrical vehicles. A typical SRM drive requires a position sensor such as an encoder or hall sensor to measure the angular rotor position. However, harsh environment in electrical AC compressors for electric vehicles makes it difficult to use the position sensor in their motor drive system. Therefore, a sensorless control scheme for electric compressor motors utilizing magnetic characteristics of SRM with respect to position angle and phase current is proposed. The overall variable speed SRM drive with position sensorless control scheme has been modeled using Matlab/Simulink software and closed loop current control simulation is presented to validate the proposed sensorless drive control.

건설장비용 동력전달계의 관성영역에서의 자기학습 제어기법 (Self-Learning Supervisory Control of a Power Transmission System in a Construction Vehicle during Inertia Phase)

  • 최길우;한진오;허재웅;조영만;이교일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.723-729
    • /
    • 2001
  • Electro-hydraulic shift control of a vehicle automatic transmission has been predominantly carried out via an open-loop control based on numerous time-consuming calibrations. Despite remarkable success in practice, the variations of system characteristics inevitably deteriorate the performance of the tuned open-loop controller. As a result, the controller parameters need to be continuously updated in order to maintain satisfactory shift quality. This paper presents a self-learning algorithm for automatic transmission shift control in a construction vehicle during inertia phase. First, an observer reconstructs the turbine acceleration signal (impossible to measure in a construction vehicle) from the readily accessible turbine speed measurement. Then, a control algorithm based on a quadratic function of the turbine acceleration is shown to guarantee the asymptotic convergence (within a specified target bound) of the error between the actual and the desired turbine accelerations. A Lyapunov argument plays a crucial role in deriving adaptive laws for control parameters. The simulation and hardware-in-the-loop simulation (HILS) studies show that the proposed algorithm actually delivers the promise of satisfactory performance despite the system characteristics variations and uncertainties.

  • PDF

저진동, 고속특성을 가지는 개선된 5차 모션 프로파일의 설계 (Development of Improved 5th Order Motion Profile for Low Vibration and High Speed)

  • 소병관;태원형;김정한
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1110-1118
    • /
    • 2012
  • In this study, for reducing the residual vibration in high speed motion control stage, an improved 5th order polynomial motion profile was developed. When a stage is moving, the current through the motor coils has the same profile of input motion profile of acceleration, therefore the characteristics of the acceleration input profile directly affect on the performance of the amplifier that includes the current control loop. Commonly low cost amplifier and motor has a narrow current control bandwidth, therefore the proposed algorithm was designed based on this practical constraint. Simulation and experimental results showed that the proposed algorithm clearly has low residual vibration characteristics than conventional 5th order polynomial motion profile on the same drive condition.