• 제목/요약/키워드: Speed Calibration

검색결과 232건 처리시간 0.026초

Development of a Helicopter Rotor Test Rig and Measurement of Aeroacoustic Characteristics (헬리콥터 로터 시험장치의 개발 및 공력소음특성의 측정)

  • Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제32권3호
    • /
    • pp.10-16
    • /
    • 2004
  • In this paper the aeroacoustic characteristics of a helicopter main rotor system is measured by using a pair of scaled rotor blades. A low noise rotor test jig is developed for noise measurement and the rotational speed, thrust and torque are measured simultaneously in order to match the aerodynamic conditions with the full scale rotor. The accuracy of the force measurement device was checked through a calibration procedure. The measured thurst and torque with a 1.2m rotor are compared to the results of analytical prediction and showed that the thrust data at various rotational speed followed the prediction relatively well, but the torque data considered less accurate. It is also found that the background noise level of the test rig is sufficiently low, and the measured noise level from the rotor can be scaled with rotor tip speed. However, the Mach number dependancy and the directivity changes depend on the noise source characteristics.

Development of Pressure Sensitive Paint(PSP) technique for low-speed flows and its application (아음속 저속 유동용 Pressure Sensitive Paint의 개발과 응용)

  • Kang, Jong-Hoon;Lee, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제32권4호
    • /
    • pp.12-17
    • /
    • 2004
  • The PSP technique has been used to measure pressure distribution on model surfaces ins high-speed flows. The objective of this study is to develop a PSP technique which can be applied to low-speed aerodynamic flows. Four different PSP formulations including two porphyrins (PtOEP and PtTFPP) and two polymers (Poly(TMSP) and RTV-118) were tested and the performance of each combination was evaluated. In a static calibration, the luminescent intensity of the PSP coatings was measured from 0kPa to 11kPa with 0.5, 1, 2kPa increments. Among 4 PSP formulations tested, the combination of PtOEP and RTV-118 shows the best performance. The developed PSP technique was applied to an oblique impinging jet to measure the pressure field distribution on the impinging plate.

Development of Force Sensor to Measure Contact Force of Pantograph for High-Speed Train (고속철도용 판토그라프 접촉력 측정을 위한 스트레인 게이지 내장형 하중센서 개발)

  • Park, Chan-Kyoung;Kim, Young-Guk;Cho, Yong-Hyeon;Paik, Jin-Sung
    • Journal of the Korean Society for Railway
    • /
    • 제13권5호
    • /
    • pp.488-492
    • /
    • 2010
  • In order to verify the performance of high-speed train and core equipments such as current collection system, sophisticated tests and evaluating procedures must be considered. In case of force sensor to test contact force of pantograph, it should customize the test instruments according to characteristics of pantograph. In this paper, the force sensor with a built-in strain-gauge which developed to improve measuring performance of contact force between the pantograph and catenary system is introduced. The test and evaluation results of force sensor's static and dynamic calibration with pantograph shows that its design is very suitable and applicable for on-line test. Henceforth, the force sensor will be applied to test interaction characteristics between the pantograph and catenary system on the high-speed line and expected by a part of measuring system for evaluating current collecting characteristics more reliably.

Prediction of Draft Force of Moldboard Plow according to Travel Speed in Cohesive Soil using Discrete Element Method (이산요소법을 활용한 점성토 환경에서의 작업 속도에 따른 몰드보드 플라우 견인력 예측)

  • Bo Min Bae;Dae Wi Jung;Dong Hyung Ryu;Jang Hyeon An;Se O Choi;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • 제20권4호
    • /
    • pp.71-79
    • /
    • 2023
  • In the field of agricultural machinery, various on-field tests are conducted to measure design load for optimal design of agricultural equipment. However, field test procedures are costly and time-consuming, and there are many constraints on field soil conditions due to weather, so research on utilizing simulation to overcome these shortcomings is needed. Therefore, this study aimed to model agricultural soils using discrete element method (DEM) software. To simulate draft force, predictions are made according to travel speed and compared to field test results to validate the prediction accuracy. The measured soil properties are used for DEM modeling. In this study, the soil property measurement procedure was designed to measure the physical and mechanical properties. DEM soil model calibration was performed using a virtual vane shear test instead of the repose angle test. The DEM simulation results showed that the prediction accuracy of the draft force was within 4.8% (2.16~6.71%) when compared to the draft force measured by the field test. In addition, it was confirmed that the result was up to 72.51% more accurate than those obtained through theoretical methods for predicting draft force. This study provides useful information for the DEM soil modeling process that considers the working speed from the perspective of agricultural machinery research and it is expected to be utilized in agricultural machinery design research.

Implementation of the Wavelength-Swept-Source and Signal Processing for the Frequency Domain Optical Coherence Tomography (주파수영역 광 간섭 단층촬영 시스템을 위한 파장가변 광원 및 신호처리계의 구현)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • Korean Journal of Optics and Photonics
    • /
    • 제18권5호
    • /
    • pp.309-316
    • /
    • 2007
  • We demonstrate the wavelength swept source and signal processing for the frequency domain optical coherence tomography. The laser output performance is improved by using a semiconductor optical amplifier with a booster amplifier. The laser generates 14 mW of average power of which wavelength shift in the lasing spectral shape is compensated. Adopting a Fabry-Perot etalon and digital signal processing, the broadening of the beat frequency due to the variance of wavelength-sweep-velocity is calibrated. The optical coherence tomography system shows 154.4 kHz of axial scanning speed, 0.95mm of depth range, and $12{\pm}0.37{\mu}m$ of axial resolution.

Design and Implementation of Low Power Touch Screen Controller for Mobile Devices (모바일용 저전력 터치 스크린 제어 회로 설계 및 구현)

  • Park, Sang-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제12권6호
    • /
    • pp.279-283
    • /
    • 2012
  • In is paper, we design and implement the low power, high speed touch screen controller that calculates and outputs the coordinate of touch point on the touch screen of mobile devices. The system clock is 10HMz, the number of input channels is 21, standby current is $20{\mu}A$, dynamic range of input is 140pF~400pF and the response time is 0.1ms/frame. It contains the power management unit for low power, automatic impedance calibration unit in order to adapt to humidity, temperature and evaluation board, adjacent key and pattern interference suppression unit, serial interface unit of I2C and SPI. The function and performance is verified by using FPGA and $0.18{\mu}m$ CMOS standard process. The implemented touch screen is designed for using in the double layer ITO(Indium Thin Oxide) module with diamond pattern and single layer ITO module for cost-effective which are applied to mobile phone or smart remote controller.

A fast and accurate method of extracting lens array lattice in integral imaging (집적 영상에서 빠르고 정확한 렌즈 배열 격자 검출 방법)

  • Jeong, Hyeon-Ah;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제21권9호
    • /
    • pp.1711-1717
    • /
    • 2017
  • In this paper, we propose a fast and accurate method of extracting lens array lattice in integral imaging by using an appropriate calibration pattern image and fast median filtering. In order to extract the lattice of a lens array, vertical and horizontal edge images are required. To extract edge images, the well-known previous method used separable median filters. However, this method is slow and difficult to determine the median filter size. In order to overcome this problem, we try to improve speed by calculating median value through binary counting method. In addition, we propose a calibration pattern image that detects edges well and improves the accuracy. Experimental results indicate that the proposed method is superior to the existing method in extracting the lattice of a lens array in integral imaging.

Design of a Cross-obstacle Neural Network Controller using Running Error Calibration (주행 오차 보정을 통한 장애물 극복 신경망 제어기 설계)

  • Lim, Shin-Teak;Yoo, Sung-Goo;Kim, Tae-Yeong;Kim, Yeong-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제16권5호
    • /
    • pp.463-468
    • /
    • 2010
  • An obstacle avoidance method for a mobile robot is proposed in this paper. Our research was focused on the obstacles that can be found indoors since a robot is usually used within a building. It is necessary that the robot maintain the desired direction after successfully avoiding the obstacles to achieve a good autonomous navigation performance for the specified project mission. Sensors such as laser, ultrasound, and PSD (Position Sensitive Detector) can be used to detect and analyze the obstacles. A PSD sensor was used to detect and measure the height and width of the obstacles on the floor. The PSD sensor was carefully calibrated before measuring the obstacles to achieve better accuracy. Data obtained from the repeated experiments were used to plot an error graph which was fitted to a polynomial curve. The polynomial equation was used to navigate the robot. We also obtained a direction-error model of the robot after avoiding the obstacles. The prototypes for the obstacle and direction-error were modeled using a neural network whose inputs are the obstacle height, robot speed, direction of the wheels, and the error in direction. A mobile robot operated by a notebook computer was setup and the proposed algorithm was used to navigate the robot and avoid the obstacles. The results showed that our algorithm performed very well during the experiments.

Water Hammer in the Pump Pipeline System with an Air Chamber (에어챔버가 설치된 가압펌프 계통에서의 수격현상)

  • Kim, Sang-Gyun;Lee, Kye-Bock
    • Journal of Energy Engineering
    • /
    • 제16권4호
    • /
    • pp.187-193
    • /
    • 2007
  • Water hammer following the tripping of pumps can lead to overpressures and negative pressures. Reduction in overpressure and negative pressure may be necessary to avoid failure, to improve the efficiency of operation and to avoid fatigue of system components. The field tests on the water hammer have been conducted on the pump rising pipeline system with an air chamber. The hydraulic transient is modeled using the method of characteristics. Minimizing the least squares problem representing the difference between the measured and predicted transient response in the system performs the calibration of the simulation program. Among the input variables used in the water hammer analysis, the effects of the polytropic exponent, the discharge coefficient and the wave speed on the result of the numerical analysis were examined. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system. The correct selection of air chamber size and the effects of related parameters to minimize water hammer have been investigated by both field measurements and numerical modeling.

Study on Strain Measurement of Agricultural Machine Elements Using Microcomputer (Microcomputer를 이용(利用)한 농업기계요소(農業機械要素)의 Strain 측정(測定)에 관(關)한 연구(硏究))

  • Kim, Kee Dae;Kim, Tae Kyun;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • 제8권1호
    • /
    • pp.90-96
    • /
    • 1981
  • To design more efficient agricultural machinery, the accurately measuring system among many other factors is essential. A light-beam oscillographic recorder is generally used in measuring dynamic strain but it is not compatible with the extremely high speed measuring system such as 1,000 m/s, also is susceptable to damage due to vibration while using the system in field. The recorder used light sensitive paper for strip chart recording. The reading and analysis of data from the strip charts is very cumbersome, errorneous and time consuming. A microcomputer was interfaced with A/D converter, microcomputer program was developed for measuring, system calibration was done and the strain generated from a cantilever beam vibrator was measured. The results are summarized as follows. 1. Microcomputer program was developed to perform strain measuring of agricultural machine elements and could be controled freely the measuring intervals, no. of channels and no. of data. The maximum measuring speed was $62{\mu}s$. 2. Calibration the system was performed with triangle wave generated from a function generator and checked by an oscilloscope. The sampled data were processed using HP 3000 minicomputer of Chungnam National University computer center the graphical results were triangle same as input wave and so the system have been out of phase distorsion and amplitude distorsion. 3. The strain generated from a cantilever beam vibrator which has free vibration period of 0.019 second were measured by the system controlled to have l.0 ms of time interval and its computer output showing vibration curve which is well filted to theoretical value. 4. Using microcomputer on measuring the strain of agricultural machine elements could not only save analyzing time and recording papers but also get excellent adaptation to field experiment, especially in measurement requiring high speed and good precision.

  • PDF