• 제목/요약/키워드: Speech improvement

검색결과 613건 처리시간 0.025초

발성장애 평가 시 /a/ 모음연장발성 및 문장검사의 켑스트럼 분석 비교 (Comparison of Vowel and Text-Based Cepstral Analysis in Dysphonia Evaluation)

  • 김태환;최정임;이상혁;진성민
    • 대한후두음성언어의학회지
    • /
    • 제26권2호
    • /
    • pp.117-121
    • /
    • 2015
  • Background : Cepstral analysis which is obtained from Fourier transformation of spectrum has been known to be effective indicator to analyze the voice disorder. To evaluate the voice disorder, phonation of sustained vowel /a/ sound or continuous speech have been used but the former was limited to capture hoarseness properly. This study is aimed to compare the effectiveness in analysis of cepstrum between the sustained vowel /a/ sound and continuous speech. Methods : From March 2012 to December 2014, total 72 patients was enrolled in this study, including 24 unilateral vocal cord palsy, vocal nodule and vocal polyp patients, respectively. The entire patient evaluated their voice quality by VHI (Voice Handicap Index) before and after treatment. Phonation of sustained vowel /a/ sample and continuous speech using the first sentence of autumn paragraph was subjected by cepstral analysis and compare the pre-treatment group and post-treatment group. Results : The measured values of pre and post treatment in CPP-a (cepstral peak prominence in /a/ vowel sound) was 13.80, 13.91 in vocal cord palsy, 16.62, 17.99 in vocal cord nodule, 14.19, 18.50 in vocal cord polyp respectively. Values of CPP-s (cepstral peak prominence in text-based speech) in pre and post treatment was 11.11, 12.09 in vocal cord palsy, 12.11, 14.09 in vocal cord nodule, 12.63, 14.17 in vocal cord polyp. All 72 patients showed subjective improvement in VHI after treatment. CPP-a showed statistical improvement only in vocal polyp group, but CPP-s showed statistical improvement in all three groups (p<0.05). Conclusion : In analysis of cepstrum, text-based analysis is more representative in voice disorder than vowel sound speech. So when the acoustic analysis of voice by cepstrum, both phonation of sustained vowel /a/ sound and text based speech should be performed to obtain more accurate result.

  • PDF

음성 명료도 향상을 위한 분류 모델의 잡음 환경 적응 (Adaptation of Classification Model for Improving Speech Intelligibility in Noise)

  • 정준영;김기백
    • 방송공학회논문지
    • /
    • 제23권4호
    • /
    • pp.511-518
    • /
    • 2018
  • 본 논문에서는 잡음 환경의 음성 신호를 시간-주파수 영역으로 분해한 후 0 또는 1로 표현되는 이진 마스크를 적용하여 음성의 명료도를 높이는 방법에 대해 다룬다. 시간-주파수 영역으로 분해된 신호에 대해 상대적으로 잡음이 많이 섞인 경우는 마스크 "0"을 할당하여 제거하고, 그렇지 않은 경우는 마스크 "1"을 할당하여 보존하는 방식을 채택한다. 이러한 이진 마스크의 추정은 가우시안 혼합 모델로 학습된 베이지안 분류기를 사용한다. 가우시안 혼합 모델 학습에 포함된 잡음 환경에 대해서는 학습된 모델을 이용하여 추정된 이진 마스크의 적용을 통해 잡음 환경에서 음성 명료도를 높일 수 있으나 학습에 포함되지 않은 잡음 환경에 대해서는 음성 명료도를 향상시키지 못하는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 학습 모델을 잡음 환경에 적응시키고자 한다. 새로운 잡음 환경에 대처하고자 음성 인식에서 사용되는 대표적인 화자 적응 방법을 적용하였으며 실험을 통해 새로운 잡음 환경에 적응함을 확인하였다.

남성과 여성의 음성 특징 비교 및 성별 음성인식에 의한 인식 성능의 향상 (Comparison of Male/Female Speech Features and Improvement of Recognition Performance by Gender-Specific Speech Recognition)

  • 이창영
    • 한국전자통신학회논문지
    • /
    • 제5권6호
    • /
    • pp.568-574
    • /
    • 2010
  • 음성인식에서의 인식률 향상을 위한 노력의 일환으로서, 본 논문에서는 성별을 구분하지 않는 일반적 화자독립 음성인식과 성별에 따른 음성인식의 성능을 비교하는 연구를 수행하였다. 실험을 위해 남녀 각 20명의 화자로 하여금 각각 300단어를 발성하게 하고, 그 음성 데이터를 여성/남성/혼성A/혼성B의 네 그룹으로 나누었다. 우선, 성별 음성인식에 대한 근거의 타당성을 파악하기 위하여 음성 신호의 주파수 분석 및 MFCC 특징벡터들의 성별 차이를 조사하였다. 그 결과, 성별 음성인식의 동기를 뒷받침할 정도의 두드러진 성별 차이가 확인되었다. 음성인식을 수행한 결과, 성을 구분하지 않는 일반적인 화자독립의 경우에 비해 성별 음성인식에서의 오류율이 절반 이하로 떨어지는 것으로 나타났다. 이로부터, 성 인식과 성별 음성인식을 계층적으로 수행함으로써 화자독립의 인식률을 높일 수 있을 것으로 사료된다.

음성 인식 신경망을 위한 음성 파라키터들의 성능 비교 (A Comparative Study of Speech Parameters for Speech Recognition Neural Network)

  • 김기석;임은진;황희융
    • 한국음향학회지
    • /
    • 제11권3호
    • /
    • pp.61-66
    • /
    • 1992
  • 음성 인식에 신경망 모델을 적용하는 많은 연구들이 있었지만, 주된 관심은 음성인식에 적합한 구조와 학습 방법이었다. 그러나 음성인식에 신경망 모델을 적용한 시스템의 효율 향상은 모델 자체의 구조뿐 아니라, 신경망 모델의 입력으로 어떤 음성 파라미터를 사용하는가에 따라서도 큰 영향을 받는다. 본 논문은 기존 음성인식에 신경망 모델을 적용한 많은 연구들에서 사용한 음성 파라미터를 살펴보고, 대표적인 음성 파라미터 6개를 선정하여, 같은 데이타와 같은 신경망 모델 하에서 어떻게 성능이 달라지는지를 분석한다. 인식 실험에 있어서는 한국어 파열음 9개에 대한 8개 데이터 집합과 모음 8개에 대한 18개 데이터 집합을 음성 파라미터로 하고 신경망 모델은 순환 신경망 모델을 사용하여 노드의 수를 일정하게 한뒤 다양한 입력 파라미터의 성능을 비교하였다. 그 결과 선형 예측 계수로부터 얻어진 delta cepstrum의 음성 파라미터가 가장 좋은 성능을 보였으며 이때 인식률은 같은 학습 데이터에 대해 파열음 100.0%, 모음 95.1%이었다.

  • PDF

IPA를 활용한 다국어 음성 인식에 관한 연구 (A Study on the Multilingual Speech Recognition using International Phonetic Language)

  • 김석동;김우성;우인성
    • 한국산학기술학회논문지
    • /
    • 제12권7호
    • /
    • pp.3267-3274
    • /
    • 2011
  • 최근 다양한 모바일 기기의 사용자 환경과 다양한 음성인식 소프트웨어의 영향으로 음성인식 기술역시 빠르게 발전되고 있다. 그러나 다국어를 대상으로 하는 음성인식의 경우 다국어 혼합음성에 대한 이해 부족과 시스템 성능의 한계로 인하여 원활한 인식율의 개선은 이루어지지 않고 있다. 여러 나라의 혼합 언어로 표현된 음성의 경우 하나의(단일) 음성모델로 구현하는 것이 쉽지 않고, 또한 여러 개의 음성모델을 사용한 시스템의 경우 음성인식 성능의 저하라는 문제점이 있다. 이에 따라 다양한 언어로 구성되어 있는 음성을 하나의 음성모델로 표현할 수 있는 다국어 음성인식 모바일 시스템의 개발 필요성이 증가되고 이에 대한 연구가 필요하다. 본 논문에서는 모바일 시스템에서 다국어 혼합 음성모델을 사용하기 위한 기본연구로써 한국어와 영어 음성을 국제 음성기호(IPA)로 인식하는 통합음성모델 시스템 구축을 연구하였고, 한국어와 영어 음소를 동시에 만족하는 IPA모델을 찾는데 중점을 두어 실험한 결과 우리말 음성은 94.8%, 영어 음성은 95.36%라는 인식률을 얻을 수 있었다.

음질 및 속도 향상을 위한 선형 스펙트로그램 활용 Text-to-speech (Text-to-speech with linear spectrogram prediction for quality and speed improvement)

  • 윤혜빈
    • 말소리와 음성과학
    • /
    • 제13권3호
    • /
    • pp.71-78
    • /
    • 2021
  • 인공신경망에 기반한 대부분의 음성 합성 모델은 고음질의 자연스러운 발화를 생성하기 위해 보코더 모델을 사용한다. 보코더 모델은 멜 스펙트로그램 예측 모델과 결합하여 멜 스펙트로그램을 음성으로 변환한다. 그러나 보코더 모델을 사용할 경우에는 많은 양의 컴퓨터 메모리와 훈련 시간이 필요하며, GPU가 제공되지 않는 실제 서비스 환경에서 음성 합성이 오래 걸린다는 단점이 있다. 기존의 선형 스펙트로그램 예측 모델에서는 보코더 모델을 사용하지 않으므로 이 문제가 발생하지 않지만, 대신에 고품질의 음성을 생성하지 못한다. 본 논문은 뉴럴넷 기반 보코더를 사용하지 않으면서도 양질의 음성을 생성하는 Tacotron 2 & Transformer 기반의 선형 스펙트로그램 예측 모델을 제시한다. 본 모델의 성능과 속도 측정 실험을 진행한 결과, 보코더 기반 모델에 비해 성능과 속도 면에서 조금 더 우세한 점을 보였으며, 따라서 고품질의 음성을 빠른 속도로 생성하는 음성 합성 모델 연구의 발판 역할을 할 것으로 기대한다.

딥러닝을 이용한 한국어 Head-Tail 토큰화 기법과 품사 태깅 (Korean Head-Tail Tokenization and Part-of-Speech Tagging by using Deep Learning)

  • 김정민;강승식;김혁만
    • 대한임베디드공학회논문지
    • /
    • 제17권4호
    • /
    • pp.199-208
    • /
    • 2022
  • Korean is an agglutinative language, and one or more morphemes are combined to form a single word. Part-of-speech tagging method separates each morpheme from a word and attaches a part-of-speech tag. In this study, we propose a new Korean part-of-speech tagging method based on the Head-Tail tokenization technique that divides a word into a lexical morpheme part and a grammatical morpheme part without decomposing compound words. In this method, the Head-Tail is divided by the syllable boundary without restoring irregular deformation or abbreviated syllables. Korean part-of-speech tagger was implemented using the Head-Tail tokenization and deep learning technique. In order to solve the problem that a large number of complex tags are generated due to the segmented tags and the tagging accuracy is low, we reduced the number of tags to a complex tag composed of large classification tags, and as a result, we improved the tagging accuracy. The performance of the Head-Tail part-of-speech tagger was experimented by using BERT, syllable bigram, and subword bigram embedding, and both syllable bigram and subword bigram embedding showed improvement in performance compared to general BERT. Part-of-speech tagging was performed by integrating the Head-Tail tokenization model and the simplified part-of-speech tagging model, achieving 98.99% word unit accuracy and 99.08% token unit accuracy. As a result of the experiment, it was found that the performance of part-of-speech tagging improved when the maximum token length was limited to twice the number of words.

로컬 프레임 속도 변경에 의한 데이터 증강을 이용한 트랜스포머 기반 음성 인식 성능 향상 (Improving transformer-based speech recognition performance using data augmentation by local frame rate changes)

  • 임성수;강병옥;권오욱
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.122-129
    • /
    • 2022
  • 본 논문은 프레임 속도를 국부적으로 조절하는 데이터 증강을 이용하여 트랜스포머 기반 음성 인식기의 성능을 개선하는 방법을 제안한다. 먼저, 원래의 음성데이터에서 증강할 부분의 시작 시간과 길이를 랜덤으로 선택한다. 그 다음, 선택된 부분의 프레임 속도는 선형보간법을 이용하여 새로운 프레임 속도로 변경된다. 월스트리트 저널 및 LibriSpeech 음성데이터를 이용한 실험결과, 수렴 시간은 베이스라인보다 오래 걸리지만, 인식 정확도는 대부분의 경우에 향상됨을 보여주었다. 성능을 더욱 향상시키기 위하여 변경 부분의 길이 및 속도 등 다양한 매개변수를 최적화하였다. 제안 방법은 월스트리트 저널 및 LibriSpeech 음성 데이터에서 베이스라인과 비교하여 각각 11.8 % 및 14.9 %의 상대적 성능 향상을 보여주는 것으로 나타났다.

Treatment of velopharyngeal insufficiency in a patient with a submucous cleft palate using a speech aid: the more treatment options, the better the treatment results

  • Park, Yun-Ha;Jo, Hyun-Jun;Hong, In-Seok;Leem, Dae-Ho;Baek, Jin-A;Ko, Seung-O
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제41권
    • /
    • pp.19.1-19.6
    • /
    • 2019
  • Background: The submucous cleft palate (SMCP) is a type of cleft palate that may result in velopharyngeal insufficiency (VPI). Palate muscles completely separate oral and nasal cavities by closing off the velopharynx during functional processes such as speech or swallow. Also, hypernasality may arise from anatomical or neurological abnormalities in these functions. Treatments of this issue involve a combination of surgical intervention, speech aid, and speech therapy. This case report demonstrates successfully treated VPI resulted from SMCP without any surgical intervention but solely with speech aid appliance and speech therapy. Case presentation: A 13-year-old female patient with a speech disorder from velopharyngeal insufficiency that was caused by a submucous cleft palate visited to our OMFS clinic. In the intraoral examination, the patient had a short soft palate and bifid uvula. And the muscles in the palate did not contract properly during oral speech. She had no surgical history such as primary palatoplasty or pharyngoplasty except for tonsillectomy. And there were no other medical histories. Objective speech assessment using nasometer was performed. We diagnosed that the patient had a SMCP. The patient has shown a decrease in speech intelligibility, which resulted from hypernasality. We decided to treat the patient with speech aid (palatal lift) along with speech therapy. During the 7-month treatment, hypernasality measured by a nasometer decreased and speech intelligibility became normal. Conclusions: Surgery remains the first treatment option for patients with velopharyngeal insufficiencies from submucous cleft palates. However, there were few reports about objective speech evaluation pre- or post-operation. Moreover, there has been no report of non-surgical treatment in the recent studies. From this perspective, this report of objective improvement of speech intelligibility of VPI patient with SMCP by non-surgical treatment has a significant meaning. Speech aid can be considered as one of treatment options for management of SMCP.

한국어에 의한 EVRC LSP 코드북 설계 (Design of EVRC LSP Codebooks with Korean)

  • 이진걸
    • 한국음향학회지
    • /
    • 제21권2호
    • /
    • pp.167-172
    • /
    • 2002
  • 음성부호화 알고리즘인 EVRC (Enhanced Variable Rate Codec)는 현재 북미 및 한국 CDMA 디지털 셀룰러 시스템에 사용되고 있다. EVRC음성부호화기에서 음성의 주파수영역에서의 에너지 분포와 관련되어 있는 LSP (Line Spectral Pairs)값은 가중분할 벡터 양자화 (Weighted Split Vector Quantization)에 의해 코딩된다. 이러한 코딩 과정에 사용되는 LSP 코드북이 개발국 언어 혹은 영어로 설계되었음을 감안하면 한국어통화에 대해서는 한국어로 설계된 LS 코드북에 의해 향상된 성능을 기대할 수 있다. 본 논문에서는 한국어로 BVRC의 LSP 코드북을 LBG알고리즘을 기반으로 한 벡터 양자화기법으로 설계하였으며 이 코드북에 의한 벡터양자화 성능향상 및 그에 따른 음질향상을 각각 SD (Spectral Distortion) 및 신호대 잡음비 (SNR), SegSNR측정으로 입증하였다.