Background : Cepstral analysis which is obtained from Fourier transformation of spectrum has been known to be effective indicator to analyze the voice disorder. To evaluate the voice disorder, phonation of sustained vowel /a/ sound or continuous speech have been used but the former was limited to capture hoarseness properly. This study is aimed to compare the effectiveness in analysis of cepstrum between the sustained vowel /a/ sound and continuous speech. Methods : From March 2012 to December 2014, total 72 patients was enrolled in this study, including 24 unilateral vocal cord palsy, vocal nodule and vocal polyp patients, respectively. The entire patient evaluated their voice quality by VHI (Voice Handicap Index) before and after treatment. Phonation of sustained vowel /a/ sample and continuous speech using the first sentence of autumn paragraph was subjected by cepstral analysis and compare the pre-treatment group and post-treatment group. Results : The measured values of pre and post treatment in CPP-a (cepstral peak prominence in /a/ vowel sound) was 13.80, 13.91 in vocal cord palsy, 16.62, 17.99 in vocal cord nodule, 14.19, 18.50 in vocal cord polyp respectively. Values of CPP-s (cepstral peak prominence in text-based speech) in pre and post treatment was 11.11, 12.09 in vocal cord palsy, 12.11, 14.09 in vocal cord nodule, 12.63, 14.17 in vocal cord polyp. All 72 patients showed subjective improvement in VHI after treatment. CPP-a showed statistical improvement only in vocal polyp group, but CPP-s showed statistical improvement in all three groups (p<0.05). Conclusion : In analysis of cepstrum, text-based analysis is more representative in voice disorder than vowel sound speech. So when the acoustic analysis of voice by cepstrum, both phonation of sustained vowel /a/ sound and text based speech should be performed to obtain more accurate result.
본 논문에서는 잡음 환경의 음성 신호를 시간-주파수 영역으로 분해한 후 0 또는 1로 표현되는 이진 마스크를 적용하여 음성의 명료도를 높이는 방법에 대해 다룬다. 시간-주파수 영역으로 분해된 신호에 대해 상대적으로 잡음이 많이 섞인 경우는 마스크 "0"을 할당하여 제거하고, 그렇지 않은 경우는 마스크 "1"을 할당하여 보존하는 방식을 채택한다. 이러한 이진 마스크의 추정은 가우시안 혼합 모델로 학습된 베이지안 분류기를 사용한다. 가우시안 혼합 모델 학습에 포함된 잡음 환경에 대해서는 학습된 모델을 이용하여 추정된 이진 마스크의 적용을 통해 잡음 환경에서 음성 명료도를 높일 수 있으나 학습에 포함되지 않은 잡음 환경에 대해서는 음성 명료도를 향상시키지 못하는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 학습 모델을 잡음 환경에 적응시키고자 한다. 새로운 잡음 환경에 대처하고자 음성 인식에서 사용되는 대표적인 화자 적응 방법을 적용하였으며 실험을 통해 새로운 잡음 환경에 적응함을 확인하였다.
음성인식에서의 인식률 향상을 위한 노력의 일환으로서, 본 논문에서는 성별을 구분하지 않는 일반적 화자독립 음성인식과 성별에 따른 음성인식의 성능을 비교하는 연구를 수행하였다. 실험을 위해 남녀 각 20명의 화자로 하여금 각각 300단어를 발성하게 하고, 그 음성 데이터를 여성/남성/혼성A/혼성B의 네 그룹으로 나누었다. 우선, 성별 음성인식에 대한 근거의 타당성을 파악하기 위하여 음성 신호의 주파수 분석 및 MFCC 특징벡터들의 성별 차이를 조사하였다. 그 결과, 성별 음성인식의 동기를 뒷받침할 정도의 두드러진 성별 차이가 확인되었다. 음성인식을 수행한 결과, 성을 구분하지 않는 일반적인 화자독립의 경우에 비해 성별 음성인식에서의 오류율이 절반 이하로 떨어지는 것으로 나타났다. 이로부터, 성 인식과 성별 음성인식을 계층적으로 수행함으로써 화자독립의 인식률을 높일 수 있을 것으로 사료된다.
음성 인식에 신경망 모델을 적용하는 많은 연구들이 있었지만, 주된 관심은 음성인식에 적합한 구조와 학습 방법이었다. 그러나 음성인식에 신경망 모델을 적용한 시스템의 효율 향상은 모델 자체의 구조뿐 아니라, 신경망 모델의 입력으로 어떤 음성 파라미터를 사용하는가에 따라서도 큰 영향을 받는다. 본 논문은 기존 음성인식에 신경망 모델을 적용한 많은 연구들에서 사용한 음성 파라미터를 살펴보고, 대표적인 음성 파라미터 6개를 선정하여, 같은 데이타와 같은 신경망 모델 하에서 어떻게 성능이 달라지는지를 분석한다. 인식 실험에 있어서는 한국어 파열음 9개에 대한 8개 데이터 집합과 모음 8개에 대한 18개 데이터 집합을 음성 파라미터로 하고 신경망 모델은 순환 신경망 모델을 사용하여 노드의 수를 일정하게 한뒤 다양한 입력 파라미터의 성능을 비교하였다. 그 결과 선형 예측 계수로부터 얻어진 delta cepstrum의 음성 파라미터가 가장 좋은 성능을 보였으며 이때 인식률은 같은 학습 데이터에 대해 파열음 100.0%, 모음 95.1%이었다.
최근 다양한 모바일 기기의 사용자 환경과 다양한 음성인식 소프트웨어의 영향으로 음성인식 기술역시 빠르게 발전되고 있다. 그러나 다국어를 대상으로 하는 음성인식의 경우 다국어 혼합음성에 대한 이해 부족과 시스템 성능의 한계로 인하여 원활한 인식율의 개선은 이루어지지 않고 있다. 여러 나라의 혼합 언어로 표현된 음성의 경우 하나의(단일) 음성모델로 구현하는 것이 쉽지 않고, 또한 여러 개의 음성모델을 사용한 시스템의 경우 음성인식 성능의 저하라는 문제점이 있다. 이에 따라 다양한 언어로 구성되어 있는 음성을 하나의 음성모델로 표현할 수 있는 다국어 음성인식 모바일 시스템의 개발 필요성이 증가되고 이에 대한 연구가 필요하다. 본 논문에서는 모바일 시스템에서 다국어 혼합 음성모델을 사용하기 위한 기본연구로써 한국어와 영어 음성을 국제 음성기호(IPA)로 인식하는 통합음성모델 시스템 구축을 연구하였고, 한국어와 영어 음소를 동시에 만족하는 IPA모델을 찾는데 중점을 두어 실험한 결과 우리말 음성은 94.8%, 영어 음성은 95.36%라는 인식률을 얻을 수 있었다.
인공신경망에 기반한 대부분의 음성 합성 모델은 고음질의 자연스러운 발화를 생성하기 위해 보코더 모델을 사용한다. 보코더 모델은 멜 스펙트로그램 예측 모델과 결합하여 멜 스펙트로그램을 음성으로 변환한다. 그러나 보코더 모델을 사용할 경우에는 많은 양의 컴퓨터 메모리와 훈련 시간이 필요하며, GPU가 제공되지 않는 실제 서비스 환경에서 음성 합성이 오래 걸린다는 단점이 있다. 기존의 선형 스펙트로그램 예측 모델에서는 보코더 모델을 사용하지 않으므로 이 문제가 발생하지 않지만, 대신에 고품질의 음성을 생성하지 못한다. 본 논문은 뉴럴넷 기반 보코더를 사용하지 않으면서도 양질의 음성을 생성하는 Tacotron 2 & Transformer 기반의 선형 스펙트로그램 예측 모델을 제시한다. 본 모델의 성능과 속도 측정 실험을 진행한 결과, 보코더 기반 모델에 비해 성능과 속도 면에서 조금 더 우세한 점을 보였으며, 따라서 고품질의 음성을 빠른 속도로 생성하는 음성 합성 모델 연구의 발판 역할을 할 것으로 기대한다.
Korean is an agglutinative language, and one or more morphemes are combined to form a single word. Part-of-speech tagging method separates each morpheme from a word and attaches a part-of-speech tag. In this study, we propose a new Korean part-of-speech tagging method based on the Head-Tail tokenization technique that divides a word into a lexical morpheme part and a grammatical morpheme part without decomposing compound words. In this method, the Head-Tail is divided by the syllable boundary without restoring irregular deformation or abbreviated syllables. Korean part-of-speech tagger was implemented using the Head-Tail tokenization and deep learning technique. In order to solve the problem that a large number of complex tags are generated due to the segmented tags and the tagging accuracy is low, we reduced the number of tags to a complex tag composed of large classification tags, and as a result, we improved the tagging accuracy. The performance of the Head-Tail part-of-speech tagger was experimented by using BERT, syllable bigram, and subword bigram embedding, and both syllable bigram and subword bigram embedding showed improvement in performance compared to general BERT. Part-of-speech tagging was performed by integrating the Head-Tail tokenization model and the simplified part-of-speech tagging model, achieving 98.99% word unit accuracy and 99.08% token unit accuracy. As a result of the experiment, it was found that the performance of part-of-speech tagging improved when the maximum token length was limited to twice the number of words.
본 논문은 프레임 속도를 국부적으로 조절하는 데이터 증강을 이용하여 트랜스포머 기반 음성 인식기의 성능을 개선하는 방법을 제안한다. 먼저, 원래의 음성데이터에서 증강할 부분의 시작 시간과 길이를 랜덤으로 선택한다. 그 다음, 선택된 부분의 프레임 속도는 선형보간법을 이용하여 새로운 프레임 속도로 변경된다. 월스트리트 저널 및 LibriSpeech 음성데이터를 이용한 실험결과, 수렴 시간은 베이스라인보다 오래 걸리지만, 인식 정확도는 대부분의 경우에 향상됨을 보여주었다. 성능을 더욱 향상시키기 위하여 변경 부분의 길이 및 속도 등 다양한 매개변수를 최적화하였다. 제안 방법은 월스트리트 저널 및 LibriSpeech 음성 데이터에서 베이스라인과 비교하여 각각 11.8 % 및 14.9 %의 상대적 성능 향상을 보여주는 것으로 나타났다.
Park, Yun-Ha;Jo, Hyun-Jun;Hong, In-Seok;Leem, Dae-Ho;Baek, Jin-A;Ko, Seung-O
Maxillofacial Plastic and Reconstructive Surgery
/
제41권
/
pp.19.1-19.6
/
2019
Background: The submucous cleft palate (SMCP) is a type of cleft palate that may result in velopharyngeal insufficiency (VPI). Palate muscles completely separate oral and nasal cavities by closing off the velopharynx during functional processes such as speech or swallow. Also, hypernasality may arise from anatomical or neurological abnormalities in these functions. Treatments of this issue involve a combination of surgical intervention, speech aid, and speech therapy. This case report demonstrates successfully treated VPI resulted from SMCP without any surgical intervention but solely with speech aid appliance and speech therapy. Case presentation: A 13-year-old female patient with a speech disorder from velopharyngeal insufficiency that was caused by a submucous cleft palate visited to our OMFS clinic. In the intraoral examination, the patient had a short soft palate and bifid uvula. And the muscles in the palate did not contract properly during oral speech. She had no surgical history such as primary palatoplasty or pharyngoplasty except for tonsillectomy. And there were no other medical histories. Objective speech assessment using nasometer was performed. We diagnosed that the patient had a SMCP. The patient has shown a decrease in speech intelligibility, which resulted from hypernasality. We decided to treat the patient with speech aid (palatal lift) along with speech therapy. During the 7-month treatment, hypernasality measured by a nasometer decreased and speech intelligibility became normal. Conclusions: Surgery remains the first treatment option for patients with velopharyngeal insufficiencies from submucous cleft palates. However, there were few reports about objective speech evaluation pre- or post-operation. Moreover, there has been no report of non-surgical treatment in the recent studies. From this perspective, this report of objective improvement of speech intelligibility of VPI patient with SMCP by non-surgical treatment has a significant meaning. Speech aid can be considered as one of treatment options for management of SMCP.
음성부호화 알고리즘인 EVRC (Enhanced Variable Rate Codec)는 현재 북미 및 한국 CDMA 디지털 셀룰러 시스템에 사용되고 있다. EVRC음성부호화기에서 음성의 주파수영역에서의 에너지 분포와 관련되어 있는 LSP (Line Spectral Pairs)값은 가중분할 벡터 양자화 (Weighted Split Vector Quantization)에 의해 코딩된다. 이러한 코딩 과정에 사용되는 LSP 코드북이 개발국 언어 혹은 영어로 설계되었음을 감안하면 한국어통화에 대해서는 한국어로 설계된 LS 코드북에 의해 향상된 성능을 기대할 수 있다. 본 논문에서는 한국어로 BVRC의 LSP 코드북을 LBG알고리즘을 기반으로 한 벡터 양자화기법으로 설계하였으며 이 코드북에 의한 벡터양자화 성능향상 및 그에 따른 음질향상을 각각 SD (Spectral Distortion) 및 신호대 잡음비 (SNR), SegSNR측정으로 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.