• Title/Summary/Keyword: Speech Parameter

Search Result 373, Processing Time 0.023 seconds

Voice Activity Detection with Run-Ratio Parameter Derived from Runs Test Statistic

  • Oh, Kwang-Cheol
    • Speech Sciences
    • /
    • v.10 no.1
    • /
    • pp.95-105
    • /
    • 2003
  • This paper describes a new parameter for voice activity detection which serves as a front-end part for automatic speech recognition systems. The new parameter called run-ratio is derived from the runs test statistic which is used in the statistical test for randomness of a given sequence. The run-ratio parameter has the property that the values of the parameter for the random sequence are about 1. To apply the run-ratio parameter into the voice activity detection method, it is assumed that the samples of an inputted audio signal should be converted to binary sequences of positive and negative values. Then, the silence region in the audio signal can be regarded as random sequences so that their values of the run-ratio would be about 1. The run-ratio for the voiced region has far lower values than 1 and for fricative sounds higher values than 1. Therefore, the parameter can discriminate speech signals from the background sounds by using the newly derived run-ratio parameter. The proposed voice activity detector outperformed the conventional energy-based detector in the sense of error mean and variance, small deviation from true speech boundaries, and low chance of missing real utterances

  • PDF

Speech Active Interval Detection Method in Noisy Speech (잡음음성에서의 음성 활성화 구간 검출 방법)

  • Lee, Kwang-Seok;Choo, Yeon-Gyu;Kim, Hyun-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.779-782
    • /
    • 2008
  • It is important to detect speech active interval from Noisy Speech in speech communication and speech recognition. In this research, we propose characteristic parameter with combining spectral Entropy for detect speech active interval in Noisy Speech, and compare performance of speech active interval based on energy. The results shows that analysis using proposed characteristic parameter is higher performance the others in noisy environment.

  • PDF

A Time-Domain Parameter Extraction Method for Speech Recognition using the Local Peak-to-Peak Interval Information (국소 극대-극소점 간의 간격정보를 이용한 시간영역에서의 음성인식을 위한 파라미터 추출 방법)

  • 임재열;김형일;안수길
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.28-34
    • /
    • 1994
  • In this paper, a new time-domain parameter extraction method for speech recognition is proposed. The suggested emthod is based on the fact that the local peak-to-peak interval, i.e., the interval between maxima and minima of speech waveform is closely related to the frequency component of the speech signal. The parameterization is achieved by a sort of filter bank technique in the time domain. To test the proposed parameter extraction emthod, an isolated word recognizer based on Vector Quantization and Hidden Markov Model was constructed. As a test material, 22 words spoken by ten males were used and the recognition rate of 92.9% was obtained. This result leads to the conclusion that the new parameter extraction method can be used for speech recognition system. Since the proposed method is processed in the time domain, the real-time parameter extraction can be implemented in the class of personal computer equipped onlu with an A/D converter without any DSP board.

  • PDF

Feature Parameter Extraction and Analysis in the Wavelet Domain for Discrimination of Music and Speech (음악과 음성 판별을 위한 웨이브렛 영역에서의 특징 파라미터)

  • Kim, Jung-Min;Bae, Keun-Sung
    • MALSORI
    • /
    • no.61
    • /
    • pp.63-74
    • /
    • 2007
  • Discrimination of music and speech from the multimedia signal is an important task in audio coding and broadcast monitoring systems. This paper deals with the problem of feature parameter extraction for discrimination of music and speech. The wavelet transform is a multi-resolution analysis method that is useful for analysis of temporal and spectral properties of non-stationary signals such as speech and audio signals. We propose new feature parameters extracted from the wavelet transformed signal for discrimination of music and speech. First, wavelet coefficients are obtained on the frame-by-frame basis. The analysis frame size is set to 20 ms. A parameter $E_{sum}$ is then defined by adding the difference of magnitude between adjacent wavelet coefficients in each scale. The maximum and minimum values of $E_{sum}$ for period of 2 seconds, which corresponds to the discrimination duration, are used as feature parameters for discrimination of music and speech. To evaluate the performance of the proposed feature parameters for music and speech discrimination, the accuracy of music and speech discrimination is measured for various types of music and speech signals. In the experiment every 2-second data is discriminated as music or speech, and about 93% of music and speech segments have been successfully detected.

  • PDF

A Study on the Endpoint Detection Algorithm (끝점 검출 알고리즘에 관한 연구)

  • 양진우
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1984.12a
    • /
    • pp.66-69
    • /
    • 1984
  • This paper is a study on the Endpoint Detection for Korean Speech Recognition. In speech signal process, analysis parameter was classification from Zero Crossing Rate(Z.C.R), Log Energy(L.E), Energy in the predictive error(Ep) and fundamental Korean Speech digits, /영/-/구/ are selected as date for the Recognition of Speech. The main goal of this paper is to develop techniques and system for Speech input ot machine. In order to detect the Endpoint, this paper makes choice of Log Energy(L.E) from various parameters analysis, and the Log Energy is very effective parameter in classifying speech and nonspeech segments. The error rate of 1.43% result from the analysis.

  • PDF

A Study on Korean Isolated Word Speech Detection and Recognition using Wavelet Feature Parameter (Wavelet 특징 파라미터를 이용한 한국어 고립 단어 음성 검출 및 인식에 관한 연구)

  • Lee, Jun-Hwan;Lee, Sang-Beom
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2238-2245
    • /
    • 2000
  • In this papr, eatue parameters, extracted using Wavelet transform for Korean isolated worked speech, are sued for speech detection and recognition feature. As a result of the speech detection, it is shown that it produces more exact detection result than eh method of using energy and zero-crossing rate on speech boundary. Also, as a result of the method with which the feature parameter of MFCC, which is applied to he recognition, it is shown that the result is equal to the result of the feature parameter of MFCC using FFT in speech recognition. So, it has been verified the usefulness of feature parameters using Wavelet transform for speech analysis and recognition.

  • PDF

Speech/Music Discrimination Using Multi-dimensional MMCD (다차원 MMCD를 이용한 음성/음악 판별)

  • Choi, Mu-Yeol;Song, Hwa-Jeon;Park, Seul-Han;Kim, Hyung-Soon
    • MALSORI
    • /
    • no.60
    • /
    • pp.191-201
    • /
    • 2006
  • Discrimination between speech and music is important in many multimedia applications. Previously we proposed a new parameter for speech/music discrimination, the mean of minimum cepstral distances (MMCD), and it outperformed the conventional parameters. One weakness of MMCD is that its performance depends on range of candidate frames to compute the minimum cepstral distance, which requires the optimal selection of the range experimentally. In this paper, to alleviate the problem, we propose a multi-dimensional MMCD parameter which consists of multiple MMCDS with combination of different candidate frame ranges. Experimental results show that the multi-dimensional MMCD parameter yields an error rate reduction of 22.5% compared with the optimally chosen one-dimensional MMCD parameter.

  • PDF

Parameter Considering Variance Property for Speech Recognition in Noisy Environment (잡음환경에서의 음성인식을 위한 변이특성을 고려한 파라메터)

  • Park, Jin-Young;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.469-472
    • /
    • 2005
  • This paper propose about effective speech feature parameter that have robust character in effect of noise in realizing speech recognition system. Established MFCC that is the basic parameter used to ASR(Automatic Speech Recognition) and DCTCs that use DCT in basic parameter. Also, proposed delta-Cepstrum and delta-delta-Cepstrum parameter that reconstruct Cepstrum to have information for variation of speech. And compared recognition performance in using HMM. For dimension reduction of each parameter LDA algorithm apply and compared recognition. Results are presented reduced dimension delta-delta-Cepstrum parameter in using LDA recognition performance that improve more than existent parameter in noise environment of various condition.

  • PDF

Method of Speech Feature Parameter Extraction Using Modified-MFCC (Modified-MECC를 이용한 음성 특징 파라미터 추출 방법)

  • 이상복;이철희;정성환;김종교
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.269-272
    • /
    • 2001
  • In speech recognition technology, the utterance of every talker have special resonant frequency according to shape of talker's lip and to the motion of tongue. And utterances are different according to each talker. Accordingly, we need the superior moth-od of speech feature parameter extraction which reflect talker's characteristic well. This paper suggests the modified-MfCC combined existing MFCC with gammatone filter. We experimented with speech data from telephone and then we obtained results of enhanced speech recognition rate which is higher than that of the other methods.

  • PDF

Extraction of Speaker Recognition Parameter Using Chaos Dimension (카오스차원에 의한 화자식별 파라미터 추출)

  • Yoo, Byong-Wook;Kim, Chang-Seok
    • Speech Sciences
    • /
    • v.1
    • /
    • pp.285-293
    • /
    • 1997
  • This paper was constructed to investigate strange attractor in considering speech which is regarded as chaos in that the random signal appears in the deterministic raising system. This paper searches for the delay time from AR model power spectrum for constructing fit attractor for speech signal. As a result of applying Taken's embedding theory to the delay time, an exact correlation dimension solution is obtained. As a result of this consideration of speech, it is found that it has more speaker recognition characteristic parameter, and gains a large speaker discrimination recognition rate.

  • PDF