• 제목/요약/키워드: Speech Learning Model

검색결과 192건 처리시간 0.027초

바타차랴 알고리즘에서 HMM 특징 추출을 이용한 음성 인식 최적 학습 모델 (Speech Recognition Optimization Learning Model using HMM Feature Extraction In the Bhattacharyya Algorithm)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제11권6호
    • /
    • pp.199-204
    • /
    • 2013
  • 음성 인식 시스템은 정확하지 않게 입력된 음성으로부터 학습 모델을 구성하고 유사한 음소 모델로 인식하기 때문에 인식률 저하를 가져온다. 따라서 본 논문에서는 바타차랴 알고리즘을 이용한 음성 인식 최적 학습 모델 구성 방법을 제안하였다. 음소가 갖는 특징을 기반으로 학습 데이터의 음소에 HMM 특징 추출 방법을 이용하였으며 유사한 학습 모델은 바타챠랴 알고리즘을 이용하여 정확한 학습 모델로 인식할 수 있도록 하였다. 바타챠랴 알고리즘을 이용하여 최적의 학습 모델을 구성하여 인식 성능을 평가하였다. 본 논문에서 제안한 시스템을 적용한 결과 음성 인식률에서 98.7%의 인식률을 나타내었다.

음성감정인식 성능 향상을 위한 트랜스포머 기반 전이학습 및 다중작업학습 (Transformer-based transfer learning and multi-task learning for improving the performance of speech emotion recognition)

  • 박순찬;김형순
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.515-522
    • /
    • 2021
  • 음성감정인식을 위한 훈련 데이터는 감정 레이블링의 어려움으로 인해 충분히 확보하기 어렵다. 본 논문에서는 음성감정인식의 성능 개선을 위해 트랜스포머 기반 모델에 대규모 음성인식용 훈련 데이터를 통한 전이학습을 적용한다. 또한 음성인식과의 다중작업학습을 통해 별도의 디코딩 없이 문맥 정보를 활용하는 방법을 제안한다. IEMOCAP 데이터 셋을 이용한 음성감정인식 실험을 통해, 가중정확도 70.6 % 및 비가중정확도 71.6 %를 달성하여, 제안된 방법이 음성감정인식 성능 향상에 효과가 있음을 보여준다.

순환 신경망 모델을 이용한 한국어 음소의 음성인식에 대한 연구 (A Study on the Speech Recognition of Korean Phonemes Using Recurrent Neural Network Models)

  • 김기석;황희영
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.782-791
    • /
    • 1991
  • In the fields of pattern recognition such as speech recognition, several new techniques using Artifical Neural network Models have been proposed and implemented. In particular, the Multilayer Perception Model has been shown to be effective in static speech pattern recognition. But speech has dynamic or temporal characteristics and the most important point in implementing speech recognition systems using Artificial Neural Network Models for continuous speech is the learning of dynamic characteristics and the distributed cues and contextual effects that result from temporal characteristics. But Recurrent Multilayer Perceptron Model is known to be able to learn sequence of pattern. In this paper, the results of applying the Recurrent Model which has possibilities of learning tedmporal characteristics of speech to phoneme recognition is presented. The test data consist of 144 Vowel+ Consonant + Vowel speech chains made up of 4 Korean monothongs and 9 Korean plosive consonants. The input parameters of Artificial Neural Network model used are the FFT coefficients, residual error and zero crossing rates. The Baseline model showed a recognition rate of 91% for volwels and 71% for plosive consonants of one male speaker. We obtained better recognition rates from various other experiments compared to the existing multilayer perceptron model, thus showed the recurrent model to be better suited to speech recognition. And the possibility of using Recurrent Models for speech recognition was experimented by changing the configuration of this baseline model.

딥러닝을 활용한 한국어 스피치 애니메이션 생성에 관한 고찰 (A Study on Korean Speech Animation Generation Employing Deep Learning)

  • 강석찬;김동주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권10호
    • /
    • pp.461-470
    • /
    • 2023
  • 딥러닝을 활용한 스피치 애니메이션 생성은 영어를 중심으로 활발하게 연구되어왔지만, 한국어에 관해서는 사례가 없었다. 이에, 본 논문은 최초로 지도 학습 딥러닝을 한국어 스피치 애니메이션 생성에 활용해 본다. 이 과정에서, 딥러닝이 스피치 애니메이션 연구를 그 지배적 기술인 음성 인식 연구로 귀결시킬 수 있는 중요한 효과를 발견하게 되어, 이 효과를 한국어 스피치 애니메이션 생성에 최대한 활용하는 방법을 고찰한다. 이 효과는 연구의 최우선 목표를 명확하게 하여, 근래에 들어 활발하지 않은 한국어 스피치 애니메이션 연구를 효과적이고 효율적으로 재활성화하는데 기여할 수 있다. 본 논문은 다음 과정들을 수행한다: (i) 블렌드쉐입 애니메이션 기술을 선택하며, (ii) 딥러닝 모델을 음성 인식 모듈과 표정 코딩 모듈의 주종 관계 파이프라인으로 구현하고, (iii) 한국어 스피치 모션 캡처 dataset을 제작하며, (iv) 두 대조용 딥러닝 모델들을 준비하고 (한 모델은 영어 음성 인식 모듈을 채택하고, 다른 모델은 한국어 음성 인식 모듈을 채택하며, 두 모델이 동일한 기본 구조의 표정 코딩 모듈을 채택한다), (v) 두 모델의 표정 코딩 모듈을 음성 인식 모듈에 종속되게 학습시킨다. 유저 스터디 결과는, 한국어 음성 인식 모듈을 채택하여 표정 코딩 모듈을 종속적으로 학습시킨 모델 (4.2/5.0 점 획득)이, 영어 음성 인식 모듈을 채택하여 표정 코딩 모듈을 종속적으로 학습시킨 모델 (2.7/5.0 점 획득)에 비해 결정적으로 더 자연스러운 한국어 스피치 애니메이션을 생성함을 보여 주었다. 이 결과는 한국어 스피치 애니메이션의 품질이 한국어 음성 인식의 정확성으로 귀결됨을 보여 줌으로써 상기의 효과를 확인해준다.

변분 오토인코더와 비교사 데이터 증강을 이용한 음성인식기 준지도 학습 (Semi-supervised learning of speech recognizers based on variational autoencoder and unsupervised data augmentation)

  • 조현호;강병옥;권오욱
    • 한국음향학회지
    • /
    • 제40권6호
    • /
    • pp.578-586
    • /
    • 2021
  • 종단간 음성인식기의 성능향상을 위한 변분 오토인코더(Variational AutoEncoder, VAE) 및 비교사 데이터 증강(Unsupervised Data Augmentation, UDA) 기반의 준지도 학습 방법을 제안한다. 제안된 방법에서는 먼저 원래의 음성데이터를 이용하여 VAE 기반 증강모델과 베이스라인 종단간 음성인식기를 학습한다. 그 다음, 학습된 증강모델로부터 증강된 데이터를 이용하여 베이스라인 종단간 음성인식기를 다시 학습한다. 마지막으로, 학습된 증강모델 및 종단간 음성인식기를 비교사 데이터 증강 기반의 준지도 학습 방법으로 다시 학습한다. 컴퓨터 모의실험 결과, 증강모델은 기존의 종단간 음성인식기의 단어오류율(Word Error Rate, WER)을 개선하였으며, 비교사 데이터 증강학습방법과 결합함으로써 성능을 더욱 개선하였다.

감마톤 특징 추출 음향 모델을 이용한 음성 인식 성능 향상 (Speech Recognition Performance Improvement using Gamma-tone Feature Extraction Acoustic Model)

  • 안찬식;최기호
    • 디지털융복합연구
    • /
    • 제11권7호
    • /
    • pp.209-214
    • /
    • 2013
  • 음성 인식 시스템에서는 인식 성능 향상을 위한 방법으로 인간의 청취 능력을 인식 시스템에 접목하였으며 잡음 환경에서 음성 신호와 잡음을 분리하여 원하는 음성 신호만을 선택할 수 있도록 구성되었다. 하지만 실용적 측면에서 음성 인식 시스템의 성능 저하 요인으로 인식 환경 변화에 따른 잡음으로 인한 음성 검출이 정확하지 못하여 일어나는 것과 학습 모델이 일치하지 않는 것을 들 수 있다. 따라서 본 논문에서는 음성 인식 향상을 위해 감마톤을 이용하여 특징을 추출하고 음향 모델을 이용한 학습 모델을 제안하였다. 제안한 방법은 청각 장면 분석을 이용한 특징을 추출을 통해 인간의 청각 인지 능력을 반영하였으며 인식을 위한 학습 모델 과정에서 음향 모델을 이용하여 인식 성능을 향상시켰다. 성능 평가를 위해 잡음 환경의 -10dB, -5dB 신호에서 잡음 제거를 수행하여 SNR을 측정한 결과 3.12dB, 2.04dB의 성능이 향상됨을 확인하였다.

Effective Acoustic Model Clustering via Decision Tree with Supervised Decision Tree Learning

  • Park, Jun-Ho;Ko, Han-Seok
    • 음성과학
    • /
    • 제10권1호
    • /
    • pp.71-84
    • /
    • 2003
  • In the acoustic modeling for large vocabulary speech recognition, a sparse data problem caused by a huge number of context-dependent (CD) models usually leads the estimated models to being unreliable. In this paper, we develop a new clustering method based on the C45 decision-tree learning algorithm that effectively encapsulates the CD modeling. The proposed scheme essentially constructs a supervised decision rule and applies over the pre-clustered triphones using the C45 algorithm, which is known to effectively search through the attributes of the training instances and extract the attribute that best separates the given examples. In particular, the data driven method is used as a clustering algorithm while its result is used as the learning target of the C45 algorithm. This scheme has been shown to be effective particularly over the database of low unknown-context ratio in terms of recognition performance. For speaker-independent, task-independent continuous speech recognition task, the proposed method reduced the percent accuracy WER by 3.93% compared to the existing rule-based methods.

  • PDF

일정 관리 영역에서의 화행 분석을 위한 효과적인 2단계 모델 (An Effective Two-Step Model for Speech Act Analysis in a Schedule Management Domain)

  • 이현정;김학수;서정연
    • 인지과학
    • /
    • 제19권3호
    • /
    • pp.297-310
    • /
    • 2008
  • 화행은 화자의 의도를 내포하기 때문에 지능형 대화 시스템을 구현할 때 화행 분석은 필수적이다. 본 논문에서는 효과적인 화행 분석을 위한 2단계 모델을 제안한다. 첫 번째 단계에서 기계 학습 기반의 신경망 모델과 확률 기반의 예측도 모델을 이용하여 개별적으로 화행 후보를 생성한다. 두 번째 단계에서는 신경망 모델이 출력한 화행 후보들을 예측도 모델이 출력한 화행 후보들로 필터링한 후, 남겨진 후보들 중에서 최대값을 가지는 화행을 선택한다. 일정관리 영역에서의 실험 결과, 제안한 2단계 모델링 방법이 기계 학습 모델이나 확률 모델만을 사용하는 기존의 방법들보다 좋은 성능을 보였다.

  • PDF

다중 스케일 시간 확장 합성곱 신경망을 이용한 방송 콘텐츠에서의 음성 검출 (Speech detection from broadcast contents using multi-scale time-dilated convolutional neural networks)

  • 장병용;권오욱
    • 말소리와 음성과학
    • /
    • 제11권4호
    • /
    • pp.89-96
    • /
    • 2019
  • 본 논문에서는 방송 콘텐츠에서 음성 구간 검출을 효과적으로 할 수 있는 심층 학습 모델 구조를 제안한다. 또한 특징 벡터의 시간적 변화를 학습하기 위한 다중 스케일 시간 확장 합성곱 층을 제안한다. 본 논문에서 제안한 모델의 성능을 검증하기 위하여 여러 개의 비교 모델을 구현하고, 프레임 단위의 F-score, precision, recall을 계산하여 보여 준다. 제안 모델과 비교 모델은 모두 같은 학습 데이터로 학습되었으며, 모든 모델은 다양한 장르(드라마, 뉴스, 다큐멘터리 등)로 구성되어 있는 한국 방송데이터 32시간을 이용하여 모델을 학습되었다. 제안 모델은 한국 방송데이터에서 F-score 91.7%로 가장 좋은 성능을 보여주었다. 또한 영국과 스페인 방송 데이터에서도 F-score 87.9%와 92.6%로 가장 높은 성능을 보여주었다. 결과적으로 본 논문의 제안 모델은 특징 벡터의 시간적 변화를 학습하여 음성 구간 검출 성능 향상에 기여할 수 있었다.

가우시안 분포에서 Maximum Log Likelihood를 이용한 벡터 양자화 기반 음성 인식 성능 향상 (Vector Quantization based Speech Recognition Performance Improvement using Maximum Log Likelihood in Gaussian Distribution)

  • 정경용;오상엽
    • 디지털융복합연구
    • /
    • 제16권11호
    • /
    • pp.335-340
    • /
    • 2018
  • 정확한 인식률을 보이고 있는 상업적인 음성인식 시스템은 화자종속 고립데이터로부터 학습 모델을 사용한다. 그러나 잡음 환경에서 데이터양에 따라 음성인식의 성능이 저하되는 문제점이 있다. 본 논문에서는 가우시안 분포에서 Maximum Log Likelihood를 이용한 벡터 양자화 기반 음성 인식 성능 향상을 제안한다. 제안하는 방법은 음성에 대한 특징을 가지고 벡터 양자화와 Maximum Log Likelihood 음성 특징 추출 방법을 이용하여 유사 음성에 대한 음성 인식의 정확성을 높이는 최적 학습 모델 구성 방법이다. 이를 위해 HMM을 기반으로 음성 특징을 추출하는 방법을 사용한다. 제안하는 방법을 사용하여 기존 시스템에서 생성되어 사용되는 음성 모델에 대한 부정확한 음성 모델에 대한 정확성을 향상시킬 수 있으므로 음성 인식에 강인한 모델을 구성할 수 있다. 제안하는 방법은 음성 인식 시스템에서 향상된 인식의 정확도를 보인다.