자동 독순(automatic lipreading)은 화자의 입술 움직임을 통해 음성을 인식하는 기술이다. 이 기술은 잡음이 존재하는 환경에서 말소리를 이용한 음성인식의 성능 저하를 보완하는 수단으로 최근 주목받고 있다. 자동 독순에서 중요한 문제 중 하나는 기록된 영상으로부터 인식에 적합한 특징을 정의하고 추출하는 것이다. 본 논문에서는 독순 성능의 향상을 위해 새로운 필터링 기법을 이용한 특징추출 기법을 제안한다. 제안하는 기법에서는 입술영역 영상에서 각 픽셀값의 시간 궤적에 대역통과필터를 적용하여 음성 정보와 관련이 없는 성분, 즉 지나치게 높거나 낮은 주파수 성분을 제거한 후 주성분분석으로 특징을 추출한다. 화자독립 인식 실험을 통해 영상에 잡음이 존재하는 환경이나 존재하지 않는 환경에서 모두 향상된 인식 성능을 얻음을 보인다.
Green IT based u-City means that u-City having Green IT concept. If we adopt the situation awareness or not, the processing of Green IT may be reduced. For example, if we recognize a lot of speech sound on CCTV in u-City environment, it takes a lot of processing time and cost. However, if we want recognize emergency sound on CCTV, it takes a few reduced processing cost. So, for detecting emergency state dynamically through CCTV, we propose our advanced speech recognition system. For the purpose of that, we adopt HMM (Hidden Markov Model) for feature extraction. Also, we adopt Wiener filter technique for noise elimination in many information coming from on CCTV in u-City environment.
This paper describes a speech recognizer implemented on PDAs. The recognizer consists of feature extraction module, search module and utterance verification module. It can recognize 37 words that can be used in the telematics application and fixed-point operation is performed for real-time processing. Simulation results show that recognition accuracy is 94.5% for the in-vocabulary words and 56.8% for the out-of-task words.
In continuous speech recognition system, it is possible to implement the system which can handle unlimited number of words by using limited number of phonetic units such as phonemes. Dividing continuous speech into the string of tems of phonemes prior to recognition process can lower the complexity of the system. But because of the coarticulations between neiboring phonemes, it is very difficult ot extract exactly their boundaries. In this paper, we propose the algorithm ot extract short terms which can represent each phonemes instead of extracting their boundaries. The short terms of lower spectral change and higher spectral chang eare detcted. Then phoneme changes are detected using distance measure with this lower spectral change terms, and hgher spectral change terms are regarded as transition terms or short phoneme terms. Finally lower spectral change terms and the mid-term of higher spectral change terms are regarded s the represent each phonemes. The cepstral coefficients and weighted cepstral distance are used for speech feature and measuring the distance because of less computational complexity, and the speech data used in this experimetn was recoreded at silent and ordinary in-dorr environment. Through the experimental results, the proposed algorithm showed higher performance with less computational complexity comparing with the conventional segmetnation algorithms and it can be applied usefully in phoneme-based continuous speech recognition.
특징벡터의 분류를 개선시켜 화자독립 음성인식의 오류율을 줄이려는 노력의 일환으로서, 우리는 MFCC의 추출에 있어서 푸리에 스펙트럼을 기울이는 방법이 미치는 효과를 연구한다. 음성신호에 FIR 필터링을 적용하는 효과의 조사도 병행된다. 제안된 방법은 두 가지 독립적인 방법에 의해 평가된다. 즉, 피셔의 차별함수에 의한 방법과 은닉 마코브 모델 및 퍼지 벡터양자화를 사용한 음성인식 오류율 조사 방법이다. 실험 결과, 적절한 파라미터의 선택에 의해 기존의 방법에 비해 10% 정도 낮은 인식 오류율이 얻어짐을 확인하였다.
We report the evaluation results of the Korean speech recognition platform called ECHOS. The platform has an object-oriented and reusable architecture so that researchers can easily evaluate their own algorithms. The platform has all intrinsic modules to build a large vocabulary speech recognizer: Noise reduction, end-point detection, feature extraction, hidden Markov model (HMM)-based acoustic modeling, cross-word modeling, n-gram language modeling, n-best search, word graph generation, and Korean-specific language processing. The platform supports both lexical search trees and finite-state networks. It performs word-dependent n-best search with bigram in the forward search stage, and rescores the lattice with trigram in the backward stage. In an 8000-word continuous speech recognition task, the platform with a lexical tree increases 40% of word errors but decreases 50% of recognition time compared to the HTK platform with flat lexicon. ECHOS reduces 40% of recognition errors through incorporation of cross-word modeling. With the number of Gaussian mixtures increasing to 16, it yields word accuracy comparable to the previous lexical tree-based platform, Julius.
International Journal of Computer Science & Network Security
/
제23권8호
/
pp.9-16
/
2023
Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.
립리딩은 잡음이 있는 환경에서 음성 인식 시스템의 성능 향상을 위한 한 방법으로 제안되었다. 기존의 논문들이 소프트웨어 립리딩 방법을 제안하는 것에 반하여, 본 논문에서는 실시간 립리딩을 위한 하드웨어 설계를 제안한다. 실시간 처리와 구현의 용이성을 위하여 본 논문에서는 립리딩 시스템을 이미지 획득 모듈, 특징 벡터 추출 모듈, 인식 모듈의 세 모듈로 분할하였다. 이미지 획득 모듈에서는 CMOS 이미지 센서를 사용하여 입력 영상을 획득하게 하였고, 특징 벡터 추출 모듈에서는 병렬 블록매칭 알고리즘을 이용하여 입력영상으로부터 특징벡터를 추출하도록 하였고, 이를 FPGA로 코딩하여 시뮬레이션 하였다. 인식 모듈에서는 추출된 특징 벡터에 대하여 HMM 기반 인식 알고리즘을 적용하여 발성한 단어를 인식하도록 하였고, 이를 DSP에 코딩하여 시뮬레이션 하였다. 시뮬레이션 결과 실시간 립리딩 시스템이 하드웨어로 구현 가능함을 알 수 있었다.
한국어 음성인식 시스템을 구현하기 위한 기초 연구로서 한국어 전음소를 대상으로 1) 각 음소의 특성을 가장 잘 나타내는 최적의 위치, 2) 최고의 인식률을 얻기 위한 적당한 지속시간길이를 찾기위해서 음소인식을 수행하였다. 인식실험을 위해 특징파라메터로 21차원 켑스트럼계수를 이용하여 베이즈 결정법칙으로서 세화자에 대한 종속인식실험을 행하였다. 인식실험결과 최고의 인식률을 보이는 최적의 특징추출의 위치는 모음에서는 10~50ms, 마찰음및 파찰음은 40~100ms, 비음, 유음은 10~50ms, 그리고 파열음은 10~50ms임을 알 수 있었다. 또, 35 전음소를 대상으로한 인식에 있어서는 최고의 인식률을 얻기위한 지속시간 정 보의 길이는 60~70ms정도가 충분함을 알 수 있었다.
본 연구에서는 음성감정인식의 적용 가능성과 실용성 향상을 위해 적은 수의 파라미터를 가지는 새로운 경량화 모델 RoutingConvNet(Routing Convolutional Neural Network)을 제안한다. 제안모델은 학습 가능한 매개변수를 줄이기 위해 양방향 MFCC(Mel-Frequency Cepstral Coefficient)를 채널 단위로 연결해 장기간의 감정 의존성을 학습하고 상황 특징을 추출한다. 저수준 특징 추출을 위해 경량심층 CNN을 구성하고, 음성신호에서의 채널 및 공간 신호에 대한 정보 확보를 위해 셀프어텐션(Self-attention)을 사용한다. 또한, 정확도 향상을 위해 동적 라우팅을 적용해 특징의 변형에 강인한 모델을 구성하였다. 제안모델은 음성감정 데이터셋(EMO-DB, RAVDESS, IEMOCAP)의 전반적인 실험에서 매개변수 감소와 정확도 향상을 보여주며 약 156,000개의 매개변수로 각각 87.86%, 83.44%, 66.06%의 정확도를 달성하였다. 본 연구에서는 경량화 대비 성능 평가를 위한 매개변수의 수, 정확도간 trade-off를 계산하는 지표를 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.