• Title/Summary/Keyword: Speech Enhancement Algorithm

Search Result 134, Processing Time 0.025 seconds

SPEECH ENHANCEMENT BY FREQUENCY-WEIGHTED BLOCK LMS ALGORITHM

  • Cho, D.H.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1985.10a
    • /
    • pp.87-94
    • /
    • 1985
  • In this paper, enhancement of speech corrupted by additive white or colored noise is stuided. The nuconstrained frequency-domain block least-mean-square (UFBLMS) adaptation algorithm and its frequency-weighted version are newly applied to speech enhancement. For enhancement of speech degraded by white noise, the performance of the UFBLMS algorithm is superior to the spectral subtraction method or Wiener filtering technique by more than 3 dB in segmented frequency-weighted signal-to-noise ratio(FWSNERSEG) when SNR of speech is in the range of 0 to 10 dB. As for enhancement of noisy speech corrupted by colored noise, the UFBLMS algorithm is superior to that of the spectral subtraction method by about 3 to 5 dB in FWSNRSEG. Also, it yields better performance by about 2 dB in FWSNR and FWSNRSEG than that of time-domain least-mean-square (TLMS) adaptive prediction filter(APF). In view of the computational complexity and performance improvement in speech quality and intelligibility, the frequency-weighted UFBLMS algorithm appears to yield the best performance among various algorithms in enhancing noisy speech corrupted by white or colored noise.

  • PDF

Data Augmentation for DNN-based Speech Enhancement (딥 뉴럴 네트워크 기반의 음성 향상을 위한 데이터 증강)

  • Lee, Seung Gwan;Lee, Sangmin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.749-758
    • /
    • 2019
  • This paper proposes a data augmentation algorithm to improve the performance of DNN(Deep Neural Network) based speech enhancement. Many deep learning models are exploring algorithms to maximize the performance in limited amount of data. The most commonly used algorithm is the data augmentation which is the technique artificially increases the amount of data. For the effective data augmentation algorithm, we used a formant enhancement method that assign the different weights to the formant frequencies. The DNN model which is trained using the proposed data augmentation algorithm was evaluated in various noise environments. The speech enhancement performance of the DNN model with the proposed data augmentation algorithm was compared with the algorithms which are the DNN model with the conventional data augmentation and without the data augmentation. As a result, the proposed data augmentation algorithm showed the higher speech enhancement performance than the other algorithms.

The Effect of the Speech Enhancement Algorithm for Sensorineural Hearing Impaired Listeners

  • Kim, Dong-Wook;Lee, Young-Woo;Lee, Jong-Shill;Chee, Young-Joon;Lee, Sang-Min;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.732-743
    • /
    • 2007
  • Background noise is one of the major complaints of not only hearing impaired persons but also normal listeners. This paper describes the results of two experiments in which speech recognition performance was determined for listeners with normal hearing and sensorineural hearing loss in noise environment. First, we compared speech enhancement algorithms by evaluation speech recognition ability in various speech-to-noise ratios and types of noise. Next, speech enhancement algorithms by reducing background noise were presented and evaluated to improve speech intelligibility for sensorineural hearing impairment listeners. We tested three noise reduction methods using single-microphone, such as spectrum subtraction and companding, Wiener filter method, and maximum likelihood envelop estimation. Their responses in background noise were investigated and compared with those by the speech enhancement algorithm that presented in this paper. The methods improved speech recognition test score for the sensorineural hearing impaired listeners, but not for normal listeners. The results suggest the speech enhancement algorithm with the loudness compression can improve speech intelligibility for listeners with sensorineural hearing loss.

Nonlinear Speech Enhancement Method for Reducing the Amount of Speech Distortion According to Speech Statistics Model (음성 통계 모형에 따른 음성 왜곡량 감소를 위한 비선형 음성강조법)

  • Choi, Jae-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.465-470
    • /
    • 2021
  • A robust speech recognition technology is required that does not degrade the performance of speech recognition and the quality of the speech when speech recognition is performed in an actual environment of the speech mixed with noise. With the development of such speech recognition technology, it is necessary to develop an application that achieves stable and high speech recognition rate even in a noisy environment similar to the human speech spectrum. Therefore, this paper proposes a speech enhancement algorithm that processes a noise suppression based on the MMSA-STSA estimation algorithm, which is a short-time spectral amplitude method based on the error of the least mean square. This algorithm is an effective nonlinear speech enhancement algorithm based on a single channel input and has high noise suppression performance. Moreover this algorithm is a technique that reduces the amount of distortion of the speech based on the statistical model of the speech. In this experiment, in order to verify the effectiveness of the MMSA-STSA estimation algorithm, the effectiveness of the proposed algorithm is verified by comparing the input speech waveform and the output speech waveform.

Probabilistic Target Speech Detection and Its Application to Multi-Input-Based Speech Enhancement (확률적 목표 음성 검출을 통한 다채널 입력 기반 음성개선)

  • Lee, Young-Jae;Kim, Su-Hwan;Han, Seung-Ho;Han, Min-Soo;Kim, Young-Il;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.1 no.3
    • /
    • pp.95-102
    • /
    • 2009
  • In this paper, an efficient target speech detection algorithm is proposed for the performance improvement of multi-input speech enhancement. Using the normalized cross correlation value between two selected channels, the proposed algorithm estimates the probabilistic distribution function of the value from the pure noise interval. Then, log-likelihoods are calculated with the function and the normalized cross correlation value to detect the target speech interval precisely. The detection results are applied to the generalized sidelobe canceller-based algorithm. Experimental results show that the proposed algorithm significantly improves the speech recognition performance and the signal-to-noise ratios.

  • PDF

Adaptive Noise Canceller for Speech Enhancement Using 2-D Binary Mask (2차원 이진 마스크를 이용한 적응형 음성향상 잡음 제거기)

  • Lee, Gihyoun;Lee, Jyung Hyun;Cho, Jin-Ho;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1127-1136
    • /
    • 2016
  • Speech enhancement algorithm plays an important role in numerous speech signal processing applications. Over the last few decades, many algorithms have been studied for speech enhancement. The algorithms are based on spectral subtraction, Wiener filter, and subspace method etc. They have good performance of speech enhancement, but the performance can be deteriorated in specific noises or low SNR environment. In this paper, a new speech enhancement algorithms are proposed based on adaptive noise canceller. And the proposed algorithm improved performance of adaptive noise cancelling using 2-D binary mask. From objective experimental index, it is confirmed that the proposed algorithm is useful and has better performance than recently proposed speech enhancement algorithms.

Two-Microphone Generalized Sidelobe Canceller with Post-Filter Based Speech Enhancement in Composite Noise

  • Park, Jinsoo;Kim, Wooil;Han, David K.;Ko, Hanseok
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.366-375
    • /
    • 2016
  • This paper describes an algorithm to suppress composite noise in a two-microphone speech enhancement system for robust hands-free speech communication. The proposed algorithm has four stages. The first stage estimates the power spectral density of the residual stationary noise, which is based on the detection of nonstationary signal-dominant time-frequency bins (TFBs) at the generalized sidelobe canceller output. Second, speech-dominant TFBs are identified among the previously detected nonstationary signal-dominant TFBs, and power spectral densities of speech and residual nonstationary noise are estimated. In the final stage, the bin-wise output signal-to-noise ratio is obtained with these power estimates and a Wiener post-filter is constructed to attenuate the residual noise. Compared to the conventional beamforming and post-filter algorithms, the proposed speech enhancement algorithm shows significant performance improvement in terms of perceptual evaluation of speech quality.

Speech Enhancement Using Lip Information and SFM (입술정보 및 SFM을 이용한 음성의 음질향상알고리듬)

  • Baek, Seong-Joon;Kim, Jin-Young
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.77-84
    • /
    • 2003
  • In this research, we seek the beginning of the speech and detect the stationary speech region using lip information. Performing running average of the estimated speech signal in the stationary region, we reduce the effect of musical noise which is inherent to the conventional MlMSE (Minimum Mean Square Error) speech enhancement algorithm. In addition to it, SFM (Spectral Flatness Measure) is incorporated to reduce the speech signal estimation error due to speaking habit and some lacking lip information. The proposed algorithm with Wiener filtering shows the superior performance to the conventional methods according to MOS (Mean Opinion Score) test.

  • PDF

Multi-Channel Speech Enhancement Algorithm Using DOA-based Learning Rate Control (DOA 기반 학습률 조절을 이용한 다채널 음성개선 알고리즘)

  • Kim, Su-Hwan;Lee, Young-Jae;Kim, Young-Il;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.3 no.3
    • /
    • pp.91-98
    • /
    • 2011
  • In this paper, a multi-channel speech enhancement method using the linearly constrained minimum variance (LCMV) algorithm and a variable learning rate control is proposed. To control the learning rate for adaptive filters of the LCMV algorithm, the direction of arrival (DOA) is measured for each short-time input signal and the likelihood function of the target speech presence is estimated to control the filter learning rate. Using the likelihood measure, the learning rate is increased during the pure noise interval and decreased during the target speech interval. To optimize the parameter of the mapping function between the likelihood value and the corresponding learning rate, an exhaustive search is performed using the Bark's scale distortion (BSD) as the performance index. Experimental results show that the proposed algorithm outperforms the conventional LCMV with fixed learning rate in the BSD by around 1.5 dB.

  • PDF

Speech Enhancement using RNN Phoneme based VAD (음소기반의 순환 신경망 음성 검출기를 이용한 음성 향상)

  • Lee, Kang;Kang, Sang-Ick;Kwon, Jang-woo;Lee, Samgmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.85-89
    • /
    • 2017
  • In this papers, we apply high performance hardware and machine learning algorithm to build an advanced VAD algorithm for speech enhancement. Since speech is made of series of phoneme, using recurrent neural network (RNN) which consider previous data is proper method to build a speech model. It is impossible to study every noise in real world. So our algorithm is builded by phoneme based study. we detect voice present frames in noisy speech signal and make enhancement of the speech signal. Phoneme based RNN model shows advanced performance in speech signal which has high correlation among each frames. To verify the performance of proposed algorithm, we compare VAD result with label data and speech enhancement result in various noise environments with previous speech enhancement algorithm.