전화망 음성 인식 시스템에서 사용할 수 있는 데이터베이스 구축의 질과 양은 인식 시스템의 성능에 중대한 영향을 미친다. 따라서, 전화망 음성 데이터 베이스 구축에 관한 효과적인 방법들이 연구되고 있다. 본 논문은 공용으로 사용할 수 있는 음성 데이터 베이스의 전화망 변환 방법 및 활용 방안에 대하여 소개한다.
본 논문에서는 다채널 위너 필터를 이용하여 마이크로폰 어레이에서 취득된 신호의 잡음을 제거하는 방법을 다룬다. 다채널 위너 필터는 음성 신호의 방향에 대한 정보를 필요로 하지 않는 필터로서 단일 음성 음원의 경우, 음성 왜곡을 발생시키지 않는 MVDR (Minimum Variance Distortionless Response) 공간 필터와 단일 채널 스펙트럼 필터로 분리될 수 있다. MVDR의 방향벡터에 해당하는 단일 음성 음원과 마이크로폰 어레이 간의 음향 전달 함수는 다채널 위너 필터의 부공간 분해 (subspace decomposition)를 이용하여 추정할 수 있다. 이 때 상관 행렬 추정 과정에서 발생하는 오차로 인해 추정되는 음향 전달 함수에도 오차가 발생하게 되며 이에 따라 다채널 위너 필터를 구성하는 MVDR은 음성 왜곡을 발생시키게 된다. 이러한 음성 왜곡을 완화시키기 위해 diagonal loading을 적용하고 실험을 통해 그 효과를 검증한다. 실험에서는 7개의 선형 마이크로폰으로 수집된 데이터를 이용하였으며 잡음을 섞기 전 신호와 잡음을 섞은 후 필터를 통과시킨 신호 간의 MFCC 오차를 측정한다. 실험 결과, diagonal loading을 통해 MFCC 오차를 줄일 수 있음을 확인하였다.
본 논문에서는 Call-and-Come 서비스를 제공하는 가정용 로봇의 호출음 등록 및 인식 시스템 구축하고, 음성 기반의 효율적인 로봇 호출음 등록 및 인식 알고리즘을 제안한다. 본 논문에서는 음성을 이용하여 로봇 호출음을 효율적으로 등록하기 위해 monophone 음향모델을 이용하여 탐색 범위를 줄이고, 줄어든 탐색 범위 내에서 triphone 음향모델을 이용하여 호출음을 등록을 한다. 또한, 잘못된 호출이 인식되는 것을 줄이기 위한 발화 검증에 필요한 피라미터를 구한다. 원거리 음성인식률을 향상시키기 위해서 근거리 음성에 최적화된 음향모델을 원거리 음성 데이터베이스로 적응시켰으며, 마이크로폰 배열을 이용하여 사용자의 위치를 추정한다. 제안한 시스템의 성능 측정을 위해 수행된 로봇 호출음에 대한 등록 및 인식 실험에서 98.3%의 음성 인식률을 얻었다.
음성신호의 스펙트럼으로부터 MFCC를 추출할 때, 일반적으로 필터뱅크의 처리과정에서 삼각형 형태의 필터를 사용한다. 그러나 더 나은 인식성능을 위해, 훈련 음성데이터의 스펙트럼에 PCA를 적용하여 필터뱅크의 필터형태를 최적화하는 PCA-optimized 필터뱅크 방법이 Lee et al. 에 의해 제안되었다. 본 논문에서는 대용량의 4연숫자 전화음성 DB를 사용하여PCA-optimized 필터뱅크 기반의 MFCC 특징파라미터를 추출하고 인식실험을 수행한 후, 기존의 삼각형 형태의 필터를 사용하는 MFCC와 각 대역별 로그에너지로 가중시켜서 얻어지는 MFCC와의 인식성능을 비교하였다. 실험결과, PCA-optimized 필터뱅크 기반의 MFCC 특징파라미터가 기존의 삼각형 형태의 필터뱅크 기반 MFCC에 비해 조금 향상된 인식률을 나타내었지만, 각 대역별 로그에너지로 가중치를 주어 얻어지는 MFCC보다는 인식률이 떨어졌다.
본 논문에서는 시간-주파수 영역에서의 이산 마스킹을 이용하여 잡음환경 음성의 음성 명료도를 높이는 방법에 대해 다루고자 한다. 잡음이 섞여 있는 음성신호를 시간-주파수 영역으로 분해하여, 상대적으로 잡음이 많이 섞여 있는 시간-주파수 영역의 신호를 마스크 "0"을 할당하여 제거함으로써 음성명료도를 향상시킬 수 있다. 이러한 이산 마스크를 추정하기 위해서는 각 시간-주파수 영역에서 신호 대 잡음 비를 추정하여 문턱값과 비교해야 하는데, 본 논문에서는 학습 기반의 신호 대 잡음 비 추정방법을 사용하여 문턱값과 비교하여 이산 마스크를 추정한다. 신호 대 잡음 비와 비교하기 위한 문턱값은 모든 주파수 대역에 대해 동일한 값을 이용하는 고정 문턱값 외에도 주파수 대역에 따라 학습 데이터의 분포로부터 최적의 값을 사용하는 최적 문턱값을 제안한다. 제안된 이산 마스크 추정 방법은 잡음 환경 데이터에 적용한 후, 피험자에게 들려주어 음성 명료도를 측정한다.
일반적인 음성인식 방법에서는 주파수 전대역에서 추출한 특징벡터를 사용하므로, 각 주파수 부대역은 최종인식 결과에 동등하게 기여한다. 본 논문에서는 주파수 부대역별로 독립적인 특징을 추출하고, 음성인식에 효과적이 되도록 부대역의 켑스트럼 해상도를 조절하는 방법을 제안한다. 주파수 부대역별로 독립적인 특징을 추출하는 멀티밴드 음성인식접근을 사용하여 부대역 특징벡터의 차원을 변화시킨다. 최적의 벡터 차원 조합을 찾기 위하여 음성인식률과 군집화 품질을 사용한다. TIDIGITS 연결 숫자음을 사용한 실험결과에서, 제안한 방법은 전대역 특징추출에 비해 적은 계산량으로도 숫자열 인식률은 99.12%, 백분율 정확도 (percent correct)는 99.775%, 백분율 정밀도 (percent accuracy)는 99.705%를 얻었으며, 이는 전대역 특징벡터에 비해 상대적 오류율을 각각 38%, 32%, 37% 감소시킨 결과이다.
We consider the feature recombination technique in a multiband approach to speaker identification and verification. To overcome the ineffectiveness of conventional feature recombination in broadband noisy environments, we propose a new subband feature recombination which uses subband likelihoods and a subband reliable-feature selection technique with an adaptive noise model. In the decision step of speaker recognition, a few very low unreliable feature likelihood scores can cause a speaker recognition system to make an incorrect decision. To overcome this problem, reliable-feature selection adjusts the likelihood scores of an unreliable feature by comparison with those of an adaptive noise model, which is estimated by the maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. To evaluate the effectiveness of the proposed methods in noisy environments, we use the TIMIT database and the NTIMIT database, which is the corresponding telephone version of TIMIT database. The proposed subband feature recombination with subband reliable-feature selection achieves better performance than the conventional feature recombination system with reliable-feature selection.
하나의 합성기에서 감정이 표현되지 않는 기본 음성과 여러 감정 음성을 함께 합성하는 경우 음색을 유지하는 것이 중요해 진다. 감정이 과도하게 표현된 녹음 음성을 사용하여 합성기를 구현하는 경우 음색이 유지되지 못해 각 합성음이 서로 다른 화자의 음성처럼 들릴 수 있다. 본 논문에서는 감정 레벨을 조절하는 HMM 기반 음성 합성기를 구현하기 위해 구축한 음성데이터의 음색 변화를 분석하였다. 음성 합성기를 구현하기 위해서는 음성을 녹음하여 데이터베이스를 구축하게 되는데, 감정 음성 합성기를 구현하기 위해서는 특히 녹음 과정이 매우 중요하다. 감정을 정의하고 레벨을 유지하는 것은 매우 어렵기 때문에 모니터링이 잘 이루어져야 한다. 음성 데이터베이스는 일반 음성과 기쁨(Happiness), 슬픔(Sadness), 화남(Anger)의 감정 음성으로 구성하였고, 각 감정은 High/Low의 2가지 레벨로 구별하여 녹음하였다. 기본음성과 감정 음성의 음색 유사도 측정을 위해 대표 모음들의 각각의 스펙트럼을 누적하여 평균 스펙트럼을 구하고, 평균 스펙트럼에서 F1(제 1포만트)을 측정하였다. 감정 음성과 일반 음성의 음색 유사도는 Low-level의 감정 데이터가 High-level의 데이터 보다 우수하였고, 제안한 방법이 이러한 감정 음성의 음색 변화를 모니터링 할 수 있는 방법이 될 수 있음을 확인할 수 있었다.
본 연구는 말더듬 화자들의 음성 데이터를 기반으로 하여, 인공지능 기술을 활용한 말더듬 자동 식별 방법을 개발하는 것을 주목적으로 진행되었다. 특히, 한국어를 모국어로 하는 말더듬 화자들을 대상으로 CNN(convolutional neural network) 알고리즘을 활용한 식별기 모델을 개발하고자 하였다. 이를 위해 말더듬 성인 9명과 정상화자 9명을 대상으로 음성 데이터를 수집하고, Google Cloud STT(Speech-To-Text)를 활용하여 어절 단위로 자동 분할한 후 유창, 막힘, 연장, 반복 등의 라벨을 부여하였다. 또한 MFCCs(mel frequency cepstral coefficients)를 추출하여 CNN 알고리즘을 기반한 말더듬 자동 식별기 모델을 수립하고자 하였다. 연장의 경우 수집결과가 5건으로 나타나 식별기 모델에서 제외하였다. 검증 결과, 정확도는 0.96으로 나타났고, 분류성능인 F1-score는 '유창'은 1.00, '막힘'은 0.67, '반복'은 0.74로 나타났다. CNN 알고리즘을 기반한 말더듬 자동분류 식별기의 효과를 확인하였으나, 막힘 및 반복유형에서는 성능이 미흡한 것으로 나타났다. 향후 말더듬의 유형별 충분한 데이터 수집을 통해 추가적인 성능 검증이 필요함을 확인하였다. 향후 말더듬 화자의 발화 빅데이터 확보를 통해 보다 신뢰성 있는 말더듬 자동 식별 기술의 개발과 함께 이를 통한 좀 더 고도화된 평가 및 중재 관련 서비스가 창출되기를 기대해 본다.
일반적으로 통계적 언어모델의 확률을 추정하는 방법은 대량의 텍스트 데이터로부터 출현빈도가 높은 단어를 선택하여 사용하고 있다. 하지만 특정 태스크에서 적용할 언어모델의 경우 시간적, 비용적 측면을 고려할 때 대용량의 텍스트의 사용은 비효율적일 것이다. 본 논문에서는 특정 태스크에서 사용하기 위해 소량의 텍스트 데이터로부터 효율적인 언어모델을 작성하는 방법을 제안한다. 즉, 언어모델을 작성할 때 출현빈도가 낮은 단어의 빈도를 개선하기 위해 같은 문장을 반복하여 학습에 참가시키므로 단어의 발생확률을 좀 더 강건하게 하였으며 제안된 언어모델을 이용하여 3명이 발성한 항공편 예약관련 200문장에 대하여 연속음성인식 실험을 수행하였다. 인식실험 결과, 반복학습에 의해 작성한 언어모델을 이용한 경우가 반복학습 적용 전에 비하여 평균 20.4%의 인식률 향상을 보였다. 또한 기존의 문맥자유문법을 이용한 시스템과 비교하여 인식률이 평균 13.4% 향상되어 제안한 방법이 시스템에 유효함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.