• 제목/요약/키워드: Speech Database

검색결과 331건 처리시간 0.021초

공용 음성 데이터 베이스 PBW452의 전화망 변환 (Conversion of Common Speech Database into Telephone Channel Environment)

  • 박준호;김태윤;고한석
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.37-40
    • /
    • 2000
  • 전화망 음성 인식 시스템에서 사용할 수 있는 데이터베이스 구축의 질과 양은 인식 시스템의 성능에 중대한 영향을 미친다. 따라서, 전화망 음성 데이터 베이스 구축에 관한 효과적인 방법들이 연구되고 있다. 본 논문은 공용으로 사용할 수 있는 음성 데이터 베이스의 전화망 변환 방법 및 활용 방안에 대하여 소개한다.

  • PDF

마이크로폰 어레이 신호의 잡음 제거를 위한 강인한 다채널 위너 필터 (Robust Multi-channel Wiener Filter for Suppressing Noise in Microphone Array Signal)

  • 정준영;김기백
    • 방송공학회논문지
    • /
    • 제23권4호
    • /
    • pp.519-525
    • /
    • 2018
  • 본 논문에서는 다채널 위너 필터를 이용하여 마이크로폰 어레이에서 취득된 신호의 잡음을 제거하는 방법을 다룬다. 다채널 위너 필터는 음성 신호의 방향에 대한 정보를 필요로 하지 않는 필터로서 단일 음성 음원의 경우, 음성 왜곡을 발생시키지 않는 MVDR (Minimum Variance Distortionless Response) 공간 필터와 단일 채널 스펙트럼 필터로 분리될 수 있다. MVDR의 방향벡터에 해당하는 단일 음성 음원과 마이크로폰 어레이 간의 음향 전달 함수는 다채널 위너 필터의 부공간 분해 (subspace decomposition)를 이용하여 추정할 수 있다. 이 때 상관 행렬 추정 과정에서 발생하는 오차로 인해 추정되는 음향 전달 함수에도 오차가 발생하게 되며 이에 따라 다채널 위너 필터를 구성하는 MVDR은 음성 왜곡을 발생시키게 된다. 이러한 음성 왜곡을 완화시키기 위해 diagonal loading을 적용하고 실험을 통해 그 효과를 검증한다. 실험에서는 7개의 선형 마이크로폰으로 수집된 데이터를 이용하였으며 잡음을 섞기 전 신호와 잡음을 섞은 후 필터를 통과시킨 신호 간의 MFCC 오차를 측정한다. 실험 결과, diagonal loading을 통해 MFCC 오차를 줄일 수 있음을 확인하였다.

가정용 로봇의 호출음 등록 및 인식 시스템 (A Name Recognition Based Call-and-Come Service for Home Robots)

  • 오유리;윤재삼;박지훈;김민아;김홍국;공동건;명현;방석원
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.360-365
    • /
    • 2008
  • 본 논문에서는 Call-and-Come 서비스를 제공하는 가정용 로봇의 호출음 등록 및 인식 시스템 구축하고, 음성 기반의 효율적인 로봇 호출음 등록 및 인식 알고리즘을 제안한다. 본 논문에서는 음성을 이용하여 로봇 호출음을 효율적으로 등록하기 위해 monophone 음향모델을 이용하여 탐색 범위를 줄이고, 줄어든 탐색 범위 내에서 triphone 음향모델을 이용하여 호출음을 등록을 한다. 또한, 잘못된 호출이 인식되는 것을 줄이기 위한 발화 검증에 필요한 피라미터를 구한다. 원거리 음성인식률을 향상시키기 위해서 근거리 음성에 최적화된 음향모델을 원거리 음성 데이터베이스로 적응시켰으며, 마이크로폰 배열을 이용하여 사용자의 위치를 추정한다. 제안한 시스템의 성능 측정을 위해 수행된 로봇 호출음에 대한 등록 및 인식 실험에서 98.3%의 음성 인식률을 얻었다.

  • PDF

PCA-optimized 필터뱅크 기반의 MFCC 특징파라미터 추출 및 한국어 4연숫자 전화음성에 대한 인식실험 (Extraction of MFCC feature parameters based on the PCA-optimized filter bank and Korean connected 4-digit telephone speech recognition)

  • 정성윤;김민성;손종목;배건성
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.279-283
    • /
    • 2004
  • 음성신호의 스펙트럼으로부터 MFCC를 추출할 때, 일반적으로 필터뱅크의 처리과정에서 삼각형 형태의 필터를 사용한다. 그러나 더 나은 인식성능을 위해, 훈련 음성데이터의 스펙트럼에 PCA를 적용하여 필터뱅크의 필터형태를 최적화하는 PCA-optimized 필터뱅크 방법이 Lee et al. 에 의해 제안되었다. 본 논문에서는 대용량의 4연숫자 전화음성 DB를 사용하여PCA-optimized 필터뱅크 기반의 MFCC 특징파라미터를 추출하고 인식실험을 수행한 후, 기존의 삼각형 형태의 필터를 사용하는 MFCC와 각 대역별 로그에너지로 가중시켜서 얻어지는 MFCC와의 인식성능을 비교하였다. 실험결과, PCA-optimized 필터뱅크 기반의 MFCC 특징파라미터가 기존의 삼각형 형태의 필터뱅크 기반 MFCC에 비해 조금 향상된 인식률을 나타내었지만, 각 대역별 로그에너지로 가중치를 주어 얻어지는 MFCC보다는 인식률이 떨어졌다.

음성 명료도 향상을 위한 학습 기반의 신호 대 잡음 비 추정을 이용한 이산 마스크 추정 방법 (Binary Mask Estimation using Training-based SNR Estimation for Improving Speech Intelligibility)

  • 김기백
    • 방송공학회논문지
    • /
    • 제17권6호
    • /
    • pp.1061-1068
    • /
    • 2012
  • 본 논문에서는 시간-주파수 영역에서의 이산 마스킹을 이용하여 잡음환경 음성의 음성 명료도를 높이는 방법에 대해 다루고자 한다. 잡음이 섞여 있는 음성신호를 시간-주파수 영역으로 분해하여, 상대적으로 잡음이 많이 섞여 있는 시간-주파수 영역의 신호를 마스크 "0"을 할당하여 제거함으로써 음성명료도를 향상시킬 수 있다. 이러한 이산 마스크를 추정하기 위해서는 각 시간-주파수 영역에서 신호 대 잡음 비를 추정하여 문턱값과 비교해야 하는데, 본 논문에서는 학습 기반의 신호 대 잡음 비 추정방법을 사용하여 문턱값과 비교하여 이산 마스크를 추정한다. 신호 대 잡음 비와 비교하기 위한 문턱값은 모든 주파수 대역에 대해 동일한 값을 이용하는 고정 문턱값 외에도 주파수 대역에 따라 학습 데이터의 분포로부터 최적의 값을 사용하는 최적 문턱값을 제안한다. 제안된 이산 마스크 추정 방법은 잡음 환경 데이터에 적용한 후, 피험자에게 들려주어 음성 명료도를 측정한다.

주파수 부대역의 켑스트럼 해상도 최적화에 의한 특징추출 (Feature Extraction by Optimizing the Cepstral Resolution of Frequency Sub-bands)

  • 지상문;조훈영;오영환
    • 한국음향학회지
    • /
    • 제22권1호
    • /
    • pp.35-41
    • /
    • 2003
  • 일반적인 음성인식 방법에서는 주파수 전대역에서 추출한 특징벡터를 사용하므로, 각 주파수 부대역은 최종인식 결과에 동등하게 기여한다. 본 논문에서는 주파수 부대역별로 독립적인 특징을 추출하고, 음성인식에 효과적이 되도록 부대역의 켑스트럼 해상도를 조절하는 방법을 제안한다. 주파수 부대역별로 독립적인 특징을 추출하는 멀티밴드 음성인식접근을 사용하여 부대역 특징벡터의 차원을 변화시킨다. 최적의 벡터 차원 조합을 찾기 위하여 음성인식률과 군집화 품질을 사용한다. TIDIGITS 연결 숫자음을 사용한 실험결과에서, 제안한 방법은 전대역 특징추출에 비해 적은 계산량으로도 숫자열 인식률은 99.12%, 백분율 정확도 (percent correct)는 99.775%, 백분율 정밀도 (percent accuracy)는 99.705%를 얻었으며, 이는 전대역 특징벡터에 비해 상대적 오류율을 각각 38%, 32%, 37% 감소시킨 결과이다.

Noise-Robust Speaker Recognition Using Subband Likelihoods and Reliable-Feature Selection

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • 제30권1호
    • /
    • pp.89-100
    • /
    • 2008
  • We consider the feature recombination technique in a multiband approach to speaker identification and verification. To overcome the ineffectiveness of conventional feature recombination in broadband noisy environments, we propose a new subband feature recombination which uses subband likelihoods and a subband reliable-feature selection technique with an adaptive noise model. In the decision step of speaker recognition, a few very low unreliable feature likelihood scores can cause a speaker recognition system to make an incorrect decision. To overcome this problem, reliable-feature selection adjusts the likelihood scores of an unreliable feature by comparison with those of an adaptive noise model, which is estimated by the maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. To evaluate the effectiveness of the proposed methods in noisy environments, we use the TIMIT database and the NTIMIT database, which is the corresponding telephone version of TIMIT database. The proposed subband feature recombination with subband reliable-feature selection achieves better performance than the conventional feature recombination system with reliable-feature selection.

  • PDF

HMM 기반 감정 음성 합성기 개발을 위한 감정 음성 데이터의 음색 유사도 분석 (Analysis of Voice Color Similarity for the development of HMM Based Emotional Text to Speech Synthesis)

  • 민소연;나덕수
    • 한국산학기술학회논문지
    • /
    • 제15권9호
    • /
    • pp.5763-5768
    • /
    • 2014
  • 하나의 합성기에서 감정이 표현되지 않는 기본 음성과 여러 감정 음성을 함께 합성하는 경우 음색을 유지하는 것이 중요해 진다. 감정이 과도하게 표현된 녹음 음성을 사용하여 합성기를 구현하는 경우 음색이 유지되지 못해 각 합성음이 서로 다른 화자의 음성처럼 들릴 수 있다. 본 논문에서는 감정 레벨을 조절하는 HMM 기반 음성 합성기를 구현하기 위해 구축한 음성데이터의 음색 변화를 분석하였다. 음성 합성기를 구현하기 위해서는 음성을 녹음하여 데이터베이스를 구축하게 되는데, 감정 음성 합성기를 구현하기 위해서는 특히 녹음 과정이 매우 중요하다. 감정을 정의하고 레벨을 유지하는 것은 매우 어렵기 때문에 모니터링이 잘 이루어져야 한다. 음성 데이터베이스는 일반 음성과 기쁨(Happiness), 슬픔(Sadness), 화남(Anger)의 감정 음성으로 구성하였고, 각 감정은 High/Low의 2가지 레벨로 구별하여 녹음하였다. 기본음성과 감정 음성의 음색 유사도 측정을 위해 대표 모음들의 각각의 스펙트럼을 누적하여 평균 스펙트럼을 구하고, 평균 스펙트럼에서 F1(제 1포만트)을 측정하였다. 감정 음성과 일반 음성의 음색 유사도는 Low-level의 감정 데이터가 High-level의 데이터 보다 우수하였고, 제안한 방법이 이러한 감정 음성의 음색 변화를 모니터링 할 수 있는 방법이 될 수 있음을 확인할 수 있었다.

인공지능 기반의 말더듬 자동분류 방법: 합성곱신경망(CNN) 활용 (AI-based stuttering automatic classification method: Using a convolutional neural network)

  • 박진;이창균
    • 말소리와 음성과학
    • /
    • 제15권4호
    • /
    • pp.71-80
    • /
    • 2023
  • 본 연구는 말더듬 화자들의 음성 데이터를 기반으로 하여, 인공지능 기술을 활용한 말더듬 자동 식별 방법을 개발하는 것을 주목적으로 진행되었다. 특히, 한국어를 모국어로 하는 말더듬 화자들을 대상으로 CNN(convolutional neural network) 알고리즘을 활용한 식별기 모델을 개발하고자 하였다. 이를 위해 말더듬 성인 9명과 정상화자 9명을 대상으로 음성 데이터를 수집하고, Google Cloud STT(Speech-To-Text)를 활용하여 어절 단위로 자동 분할한 후 유창, 막힘, 연장, 반복 등의 라벨을 부여하였다. 또한 MFCCs(mel frequency cepstral coefficients)를 추출하여 CNN 알고리즘을 기반한 말더듬 자동 식별기 모델을 수립하고자 하였다. 연장의 경우 수집결과가 5건으로 나타나 식별기 모델에서 제외하였다. 검증 결과, 정확도는 0.96으로 나타났고, 분류성능인 F1-score는 '유창'은 1.00, '막힘'은 0.67, '반복'은 0.74로 나타났다. CNN 알고리즘을 기반한 말더듬 자동분류 식별기의 효과를 확인하였으나, 막힘 및 반복유형에서는 성능이 미흡한 것으로 나타났다. 향후 말더듬의 유형별 충분한 데이터 수집을 통해 추가적인 성능 검증이 필요함을 확인하였다. 향후 말더듬 화자의 발화 빅데이터 확보를 통해 보다 신뢰성 있는 말더듬 자동 식별 기술의 개발과 함께 이를 통한 좀 더 고도화된 평가 및 중재 관련 서비스가 창출되기를 기대해 본다.

반복학습법에 의해 작성한 N-gram 언어모델을 이용한 연속음성인식에 관한 연구 (Continuous Speech Recognition Using N-gram Language Models Constructed by Iterative Learning)

  • 오세진;황철준;김범국;정호열;정현열
    • 한국음향학회지
    • /
    • 제19권6호
    • /
    • pp.62-70
    • /
    • 2000
  • 일반적으로 통계적 언어모델의 확률을 추정하는 방법은 대량의 텍스트 데이터로부터 출현빈도가 높은 단어를 선택하여 사용하고 있다. 하지만 특정 태스크에서 적용할 언어모델의 경우 시간적, 비용적 측면을 고려할 때 대용량의 텍스트의 사용은 비효율적일 것이다. 본 논문에서는 특정 태스크에서 사용하기 위해 소량의 텍스트 데이터로부터 효율적인 언어모델을 작성하는 방법을 제안한다. 즉, 언어모델을 작성할 때 출현빈도가 낮은 단어의 빈도를 개선하기 위해 같은 문장을 반복하여 학습에 참가시키므로 단어의 발생확률을 좀 더 강건하게 하였으며 제안된 언어모델을 이용하여 3명이 발성한 항공편 예약관련 200문장에 대하여 연속음성인식 실험을 수행하였다. 인식실험 결과, 반복학습에 의해 작성한 언어모델을 이용한 경우가 반복학습 적용 전에 비하여 평균 20.4%의 인식률 향상을 보였다. 또한 기존의 문맥자유문법을 이용한 시스템과 비교하여 인식률이 평균 13.4% 향상되어 제안한 방법이 시스템에 유효함을 확인하였다.

  • PDF