• 제목/요약/키워드: Speech Data Classification

검색결과 116건 처리시간 0.022초

음성합성을 위한 C-ToBI기반의 중국어 운율 경계와 F0 contour 생성 (Chinese Prosody Generation Based on C-ToBI Representation for Text-to-Speech)

  • 김승원;정옥;이근배;김병창
    • 대한음성학회지:말소리
    • /
    • 제53호
    • /
    • pp.75-92
    • /
    • 2005
  • Prosody Generation Based on C-ToBI Representation for Text-to-SpeechSeungwon Kim, Yu Zheng, Gary Geunbae Lee, Byeongchang KimProsody modeling is critical in developing text-to-speech (TTS) systems where speech synthesis is used to automatically generate natural speech. In this paper, we present a prosody generation architecture based on Chinese Tone and Break Index (C-ToBI) representation. ToBI is a multi-tier representation system based on linguistic knowledge to transcribe events in an utterance. The TTS system which adopts ToBI as an intermediate representation is known to exhibit higher flexibility, modularity and domain/task portability compared with the direct prosody generation TTS systems. However, the cost of corpus preparation is very expensive for practical-level performance because the ToBI labeled corpus has been manually constructed by many prosody experts and normally requires a large amount of data for accurate statistical prosody modeling. This paper proposes a new method which transcribes the C-ToBI labels automatically in Chinese speech. We model Chinese prosody generation as a classification problem and apply conditional Maximum Entropy (ME) classification to this problem. We empirically verify the usefulness of various natural language and phonology features to make well-integrated features for ME framework.

  • PDF

Eigenvoice를 이용한 이진 마스크 분류 모델 적응 방법 (Eigenvoice Adaptation of Classification Model for Binary Mask Estimation)

  • 김기백
    • 방송공학회논문지
    • /
    • 제20권1호
    • /
    • pp.164-170
    • /
    • 2015
  • 본 논문에서는 잡음 환경에서 취득된 음성 신호에서 잡음을 제거하기 위한 방법으로 사용되는 이진 마스크 분류 모델의 적응과정에 대해 다루고자 한다. 기존 연구결과에 의하면, 잡음 환경 데이터에 이진 마스크 기법을 적용하면 음성 명료도를 향상시킬 수 있다고 알려져 있다. 하지만 이진 마스크 분류 모델 학습 시 테스트 환경 데이터가 포함되어야 한다는 단점을 안고 있다. 본 논문에서는 새로운 잡음 환경에서 이진 마스크 분류 모델을 적응하기 위해, 음성 인식에서 널리 사용되는 화자 적응 기법인 eigenvoice 방법을 적용하고자 한다. 실험결과에서는 모델 적응에 사용되는 데이터량에 따른 성능을 정검출율과 오검출율 관점에서 평가하였고, 그 결과 새로운 잡음 환경에서 데이터량을 증가시켜 모델을 적응함으로써 향상된 성능을 나타냄을 확인할 수 있었다.

음성인식기 구현을 위한 SVM과 독립성분분석 기법의 적용 (Adoption of Support Vector Machine and Independent Component Analysis for Implementation of Speech Recognizer)

  • 박정원;김평환;김창근;허강인
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2164-2167
    • /
    • 2003
  • In this paper we propose effective speech recognizer through recognition experiments for three feature parameters(PCA, ICA and MFCC) using SVM(Support Vector Machine) classifier In general, SVM is classification method which classify two class set by finding voluntary nonlinear boundary in vector space and possesses high classification performance under few training data number. In this paper we compare recognition result for each feature parameter and propose ICA feature as the most effective parameter

  • PDF

Performance Comparison of Korean Dialect Classification Models Based on Acoustic Features

  • Kim, Young Kook;Kim, Myung Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권10호
    • /
    • pp.37-43
    • /
    • 2021
  • 말소리의 음향 특징을 이용하여 화자에 대한 중요한 사회, 언어학적 정보를 얻을 수 있는데 그 중 한 가지 핵심 특징은 방언이다. 화자의 방언 사용은 컴퓨터와의 상호작용을 방해하는 주요 요소이다. 방언은 발화의 음소, 음절, 단어, 문장 및 구와 같이 다양한 수준에서 구분할 수 있지만 이를 하나하나 식별하여 방언을 구분하기는 어렵다. 이에 본 논문에서는 음성 데이터의 특성 중 MFCC만 사용하는 경량화된 한국어 방언 분류 모델을 제안한다. 한국인 대화 음성 데이터를 통해 MFCC 특징을 활용하는 최적의 방법을 연구하고, 8가지 머신 러닝 및 딥러닝 분류 모델에서 경기/서울, 강원, 충청, 전라, 경상 5개의 한국어 방언 분류 성능을 비교한다. MFCC를 정규화하는 방법으로 대부분의 분류 모델에서 성능을 향상시켰으며, MFCC를 정규화하기 전 분류 모델의 최고 성능과 비교하여 정확도는 1.07%, F1-score는 2.04% 향상된 성능을 기록하였다.

언어장애인의 스마트스피커 접근성 향상을 위한 개인화된 음성 분류 기법 (Personalized Speech Classification Scheme for the Smart Speaker Accessibility Improvement of the Speech-Impaired people)

  • 이승권;최우진;전광일
    • 스마트미디어저널
    • /
    • 제11권11호
    • /
    • pp.17-24
    • /
    • 2022
  • 음성인식 기술과 인공지능 기술을 기반으로 한 스마트스피커의 보급으로 비장애인뿐만 아니라 시각장애인이나 지체장애인들도 홈 네트워크 서비스를 연동하여 주택의 전등이나 TV와 같은 가전제품을 음성을 통해 쉽게 제어할 수 있게 되어 삶의 질이 대폭 향상되었다. 하지만 언어장애인의 경우 조음장애나 구음장애 등으로 부정확한 발음을 하게 됨으로서 스마트스피커의 유용한 서비스를 사용하는 것이 불가능하다. 본 논문에서는 스마트스피커에서 제공되는 기능 중 일부 서비스를 대상으로 언어장애인이 이용할 수 있도록 개인화된 음성분류기법을 제안한다. 본 논문에서는 소량의 데이터와 짧은 학습시간으로도 언어장애인이 구사하는 문장의 인식률과 정확도를 높여 스마트스피커가 제공하는 서비스를 실제로 이용할 수 있도록 하는 것이 목표이다. 본 논문에서는 ResNet18 모델을 fine tuning하고 데이터 증강과 one cycle learning rate 최적화 기법을 추가하여 적용하였으며, 실험을 통하여 30개의 스마트스피커 명령어 별로 10회 녹음한 후 3분 이내로 학습할 경우 음성분류 정확도가 95.2% 정도가 됨을 보였다.

Weighted Finite State Transducer-Based Endpoint Detection Using Probabilistic Decision Logic

  • Chung, Hoon;Lee, Sung Joo;Lee, Yun Keun
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.714-720
    • /
    • 2014
  • In this paper, we propose the use of data-driven probabilistic utterance-level decision logic to improve Weighted Finite State Transducer (WFST)-based endpoint detection. In general, endpoint detection is dealt with using two cascaded decision processes. The first process is frame-level speech/non-speech classification based on statistical hypothesis testing, and the second process is a heuristic-knowledge-based utterance-level speech boundary decision. To handle these two processes within a unified framework, we propose a WFST-based approach. However, a WFST-based approach has the same limitations as conventional approaches in that the utterance-level decision is based on heuristic knowledge and the decision parameters are tuned sequentially. Therefore, to obtain decision knowledge from a speech corpus and optimize the parameters at the same time, we propose the use of data-driven probabilistic utterance-level decision logic. The proposed method reduces the average detection failure rate by about 14% for various noisy-speech corpora collected for an endpoint detection evaluation.

Vowel Fundamental Frequency in Manner Differentiation of Korean Stops and Affricates

  • Jang, Tae-Yeoub
    • 음성과학
    • /
    • 제7권1호
    • /
    • pp.217-232
    • /
    • 2000
  • In this study, I investigate the role of post-consonantal fundamental frequency (F0) as a cue for automatic distinction of types of Korean stops and affricates. Rather than examining data obtained by restricting contexts to a minimum to prevent the interference of irrelevant factors, a relatively natural speaker independent speech corpus is analysed. Automatic and statistical approaches are adopted to annotate data, to minimise speaker variability, and to evaluate the results. In spite of possible loss of information during those automatic analyses, statistics obtained suggest that vowel F0 is a useful cue for distinguishing manners of articulation of Korean non-continuant obstruents having the same place of articulation, especially of lax and aspirated stops and affricates. On the basis of the statistics, automatic classification is attempted over the relevant consonants in a specific context where the micro-prosodic effects appear to be maximised. The results confirm the usefulness of this effect in application for Korean phone recognition.

  • PDF

외국어 발음오류 검출 음성인식기를 위한 MCE 학습 알고리즘 (MCE Training Algorithm for a Speech Recognizer Detecting Mispronunciation of a Foreign Language)

  • 배민영;정용주;권철홍
    • 음성과학
    • /
    • 제11권4호
    • /
    • pp.43-52
    • /
    • 2004
  • Model parameters in HMM based speech recognition systems are normally estimated using Maximum Likelihood Estimation(MLE). The MLE method is based mainly on the principle of statistical data fitting in terms of increasing the HMM likelihood. The optimality of this training criterion is conditioned on the availability of infinite amount of training data and the correct choice of model. However, in practice, neither of these conditions is satisfied. In this paper, we propose a training algorithm, MCE(Minimum Classification Error), to improve the performance of a speech recognizer detecting mispronunciation of a foreign language. During the conventional MLE(Maximum Likelihood Estimation) training, the model parameters are adjusted to increase the likelihood of the word strings corresponding to the training utterances without taking account of the probability of other possible word strings. In contrast to MLE, the MCE training scheme takes account of possible competing word hypotheses and tries to reduce the probability of incorrect hypotheses. The discriminant training method using MCE shows better recognition results than the MLE method does.

  • PDF

SVM음성인식기 구현을 위한 강인한 특징 파라메터 (Robust Feature Parameter for Implementation of Speech Recognizer Using Support Vector Machines)

  • 김창근;박정원;허강인
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.195-200
    • /
    • 2004
  • 본 논문은 두 가지 비교 실험을 통하여 효과적 음성인식 시스템을 제안한다. 분별적 이진 패턴 분류기인 SVM(Support Vector Machines)은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있다. 본 논문에서는 학습데이터 수에 따른 HMM(Hidden Markov Model)과 SVM의 인식 성능을 비교하고, 최적의 특징 파라메터를 선택하기 위해 SVM을 이용하여 주성분해석과 독립성분분석을 적용하여 MFCC(Mel Frequency Cepstrum Coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 SVM은 HMM에 비해 적은 학습데이터에서도 높은 인식 성능을 보여주었고, 독립성분분석에 의한 특징 파라메터가 특징 공간상에서의 높은 선형 분별성에 의해 다른 특징 파라메터보다 인식 성능에서 우수함을 확인 할 수 있었다.

음성인식을 이용한 고객센터 자동 호 분류 시스템 (Automated Call Routing Call Center System Based on Speech Recognition)

  • 심유진;김재인;구명완
    • 음성과학
    • /
    • 제12권2호
    • /
    • pp.183-191
    • /
    • 2005
  • This paper describes the automated call routing for call center system based on speech recognition. We focus on the task of automatically routing telephone calls based on a users fluently spoken response instead of touch tone menus in an interactive voice response system. Vector based call routing algorithm is investigated and normalization method suggested. Call center database which was collected by KT is used for call routing experiment. Experimental results evaluating call-classification from transcribed speech are reported for that database. In case of small training data, an average call routing error reduction rate of 9% is observed when normalization method is used.

  • PDF