• 제목/요약/키워드: Speech Classification

검색결과 403건 처리시간 0.02초

이종 음성 DB 환경에 강인한 감성 분류 체계에 대한 연구 (A Study on Robust Emotion Classification Structure Between Heterogeneous Speech Databases)

  • 윤원중;박규식
    • 한국음향학회지
    • /
    • 제28권5호
    • /
    • pp.477-482
    • /
    • 2009
  • 고객센터 (call-center)와 같은 기업환경의 감성인식 시스템은 감성 훈련용 음성과 불특정 고객들의 질의 음성간의 녹취 환경차이로 인해 상당한 시스템 성능 저하와 불안정성을 겪게 된다. 본 논문에서는 이러한 문제점을 극복하기 위해 기존의 전통적인 평상/화남 감성 분류체계를 남 녀 성별에 따른 감성별 특성 변화를 적용하여 2단계 분류체계로 확장하였다. 실험 결과, 제안한 방법은 녹취 환경 차이로 인한 시스템 불안정성을 해소할 수 있을 뿐 아니라 약 25% 가까운 인식 성능 개선을 가져올 수 있었다.

Speech Emotion Recognition with SVM, KNN and DSVM

  • Hadhami Aouani ;Yassine Ben Ayed
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.40-48
    • /
    • 2023
  • Speech Emotions recognition has become the active research theme in speech processing and in applications based on human-machine interaction. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: the first one is extracting only 13 Mel-frequency Cepstral Coefficient (MFCC) from emotional speech samples and the second one is applying features fusions between the three features: Zero Crossing Rate (ZCR), Teager Energy Operator (TEO), and Harmonic to Noise Rate (HNR) and MFCC features. Secondly, we use two types of classification techniques which are: the Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) to show the performance between them. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning. A large set of experiments are conducted on Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of our experiments showed given good accuracy compared with the previous studies.

언어장애인의 스마트스피커 접근성 향상을 위한 개인화된 음성 분류 기법 (Personalized Speech Classification Scheme for the Smart Speaker Accessibility Improvement of the Speech-Impaired people)

  • 이승권;최우진;전광일
    • 스마트미디어저널
    • /
    • 제11권11호
    • /
    • pp.17-24
    • /
    • 2022
  • 음성인식 기술과 인공지능 기술을 기반으로 한 스마트스피커의 보급으로 비장애인뿐만 아니라 시각장애인이나 지체장애인들도 홈 네트워크 서비스를 연동하여 주택의 전등이나 TV와 같은 가전제품을 음성을 통해 쉽게 제어할 수 있게 되어 삶의 질이 대폭 향상되었다. 하지만 언어장애인의 경우 조음장애나 구음장애 등으로 부정확한 발음을 하게 됨으로서 스마트스피커의 유용한 서비스를 사용하는 것이 불가능하다. 본 논문에서는 스마트스피커에서 제공되는 기능 중 일부 서비스를 대상으로 언어장애인이 이용할 수 있도록 개인화된 음성분류기법을 제안한다. 본 논문에서는 소량의 데이터와 짧은 학습시간으로도 언어장애인이 구사하는 문장의 인식률과 정확도를 높여 스마트스피커가 제공하는 서비스를 실제로 이용할 수 있도록 하는 것이 목표이다. 본 논문에서는 ResNet18 모델을 fine tuning하고 데이터 증강과 one cycle learning rate 최적화 기법을 추가하여 적용하였으며, 실험을 통하여 30개의 스마트스피커 명령어 별로 10회 녹음한 후 3분 이내로 학습할 경우 음성분류 정확도가 95.2% 정도가 됨을 보였다.

Fast offline transformer-based end-to-end automatic speech recognition for real-world applications

  • Oh, Yoo Rhee;Park, Kiyoung;Park, Jeon Gue
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.476-490
    • /
    • 2022
  • With the recent advances in technology, automatic speech recognition (ASR) has been widely used in real-world applications. The efficiency of converting large amounts of speech into text accurately with limited resources has become more vital than ever. In this study, we propose a method to rapidly recognize a large speech database via a transformer-based end-to-end model. Transformers have improved the state-of-the-art performance in many fields. However, they are not easy to use for long sequences. In this study, various techniques to accelerate the recognition of real-world speeches are proposed and tested, including decoding via multiple-utterance-batched beam search, detecting end of speech based on a connectionist temporal classification (CTC), restricting the CTC-prefix score, and splitting long speeches into short segments. Experiments are conducted with the Librispeech dataset and the real-world Korean ASR tasks to verify the proposed methods. From the experiments, the proposed system can convert 8 h of speeches spoken at real-world meetings into text in less than 3 min with a 10.73% character error rate, which is 27.1% relatively lower than that of conventional systems.

Emotion Recognition in Arabic Speech from Saudi Dialect Corpus Using Machine Learning and Deep Learning Algorithms

  • Hanaa Alamri;Hanan S. Alshanbari
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.9-16
    • /
    • 2023
  • Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.

SMV코덱의 음성/음악 분류 성능 향상을 위한 Support Vector Machine의 적용 (Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Codec Based on Support Vector Machine)

  • 김상균;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.142-147
    • /
    • 2008
  • 본 논문에서는 support vector machine (SVM)을 이용하여 기존의 3GPP2 selectable mode vocoder (SMV)코덱의 음성/음악 분류 성능을 향상시키는 방법을 제시한다. SVM은 통계적 학습 이론으로 훈련 데이터 사이의 최적 분류 초평면을 찾아내 최적화된 이진 분류를 보여준다. SMV의 음성/음악 실시간 분류 알고리즘에서 사용된 특징벡터와 분류방법을 분석하고, 이를 기반으로 분류성능향상을 위해 통계적 학습 이론인 SVM을 도입한다. 구체적으로, SMV의 음성/음악 분류알고리즘에서 사용되어진 특징벡터만을 선택적으로 사용하여 효과적으로 SVM을 구성한 분류기법을 제시한다. SMV의 음성/음악 분류에 적용한 SVM의 성능 평가를 위해 SMV 원래의 분류알고리즘과 비교하였으며, 다양한 음악장르에 대해 시스템의 성능을 평가한 결과 SVM을 이용하였을 때 기존의 SMV의 방법보다 우수한 음성/음악 분류 성능을 보였다.

3GPP2 SMV의 실시간 음성/음악 분류 성능 향상을 위한 Gaussian Mixture Model의 적용 (Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Based on GMM)

  • 송지현;이계환;장준혁
    • 한국음향학회지
    • /
    • 제26권8호
    • /
    • pp.390-396
    • /
    • 2007
  • 본 논문에서는 음성 인식과 음악 인식에서 뛰어난 성능을 보이는 Expectation-Maximization(EM) 알고리즘 기반의 패턴인식기법인 가우시안 혼합모델(Gaussian Mixture Model, GMM)을 이용하여 기존의 3GPP2 Selectable Mode Vocoder(SMV)의 실시간 음성/음악 분류 성능을 향상 시키는 방법을 제안한다 SMV의 음성/음악 실시간 분류 알고리즘에서 사용된 특징벡터와 분류방법을 분석하고, 이를 기반으로 분류성능향상을 위해 패턴인식 알고리즘인 GMM을 도입한다. 구체적으로, SMV의 음성/음악 분류알고리즘에서 사용되어진 특징벡터만을 선택적으로 사용하여 효과적인 GMM을 구성한 실시간 분류기법이 제시되었다. SMV의 음성/음악 분류에 적용한 GMM의 성능 평가를 위해 SMV 원래의 분류알고리즘과 비교하였으며, 다양한 음악장르에 대해 시스템의 성능을 평가한 결과 GMM을 이용하였을 때 기존의 SMV의 방법보다 우수한 음성/음악 분류 성능을 보였다.

인공지능 기반의 말더듬 자동분류 방법: 합성곱신경망(CNN) 활용 (AI-based stuttering automatic classification method: Using a convolutional neural network)

  • 박진;이창균
    • 말소리와 음성과학
    • /
    • 제15권4호
    • /
    • pp.71-80
    • /
    • 2023
  • 본 연구는 말더듬 화자들의 음성 데이터를 기반으로 하여, 인공지능 기술을 활용한 말더듬 자동 식별 방법을 개발하는 것을 주목적으로 진행되었다. 특히, 한국어를 모국어로 하는 말더듬 화자들을 대상으로 CNN(convolutional neural network) 알고리즘을 활용한 식별기 모델을 개발하고자 하였다. 이를 위해 말더듬 성인 9명과 정상화자 9명을 대상으로 음성 데이터를 수집하고, Google Cloud STT(Speech-To-Text)를 활용하여 어절 단위로 자동 분할한 후 유창, 막힘, 연장, 반복 등의 라벨을 부여하였다. 또한 MFCCs(mel frequency cepstral coefficients)를 추출하여 CNN 알고리즘을 기반한 말더듬 자동 식별기 모델을 수립하고자 하였다. 연장의 경우 수집결과가 5건으로 나타나 식별기 모델에서 제외하였다. 검증 결과, 정확도는 0.96으로 나타났고, 분류성능인 F1-score는 '유창'은 1.00, '막힘'은 0.67, '반복'은 0.74로 나타났다. CNN 알고리즘을 기반한 말더듬 자동분류 식별기의 효과를 확인하였으나, 막힘 및 반복유형에서는 성능이 미흡한 것으로 나타났다. 향후 말더듬의 유형별 충분한 데이터 수집을 통해 추가적인 성능 검증이 필요함을 확인하였다. 향후 말더듬 화자의 발화 빅데이터 확보를 통해 보다 신뢰성 있는 말더듬 자동 식별 기술의 개발과 함께 이를 통한 좀 더 고도화된 평가 및 중재 관련 서비스가 창출되기를 기대해 본다.

Perceptual Evaluation of Duration Models in Spoken Korean

  • Chung, Hyun-Song
    • 음성과학
    • /
    • 제9권1호
    • /
    • pp.207-215
    • /
    • 2002
  • Perceptual evaluation of duration models of spoken Korean was carried out based on the Classification and Regression Tree (CART) model for text-to-speech conversion. A reference set of durations was produced by a commercial text-to-speech synthesis system for comparison. The duration model which was built in the previous research (Chung & Huckvale, 2001) was applied to a Korean language speech synthesis diphone database, 'Hanmal (HN 1.0)'. The synthetic speech produced by the CART duration model was preferred in the subjective preference test by a small margin and the synthetic speech from the commercial system was superior in the clarity test. In the course of preparing the experiment, a labeled database of spoken Korean with 670 sentences was constructed. As a result of the experiment, a trained duration model for speech synthesis was obtained. The 'Hanmal' diphone database for Korean speech synthesis was also developed as a by-product of the perceptual evaluation.

  • PDF

Decision-Tree-Based Markov Model for Phrase Break Prediction

  • Kim, Sang-Hun;Oh, Seung-Shin
    • ETRI Journal
    • /
    • 제29권4호
    • /
    • pp.527-529
    • /
    • 2007
  • In this paper, a decision-tree-based Markov model for phrase break prediction is proposed. The model takes advantage of the non-homogeneous-features-based classification ability of decision tree and temporal break sequence modeling based on the Markov process. For this experiment, a text corpus tagged with parts-of-speech and three break strength levels is prepared and evaluated. The complex feature set, textual conditions, and prior knowledge are utilized; and chunking rules are applied to the search results. The proposed model shows an error reduction rate of about 11.6% compared to the conventional classification model.

  • PDF