Discrimination of music and speech from the multimedia signal is an important task in audio coding and broadcast monitoring systems. This paper deals with the problem of feature parameter extraction for discrimination of music and speech. The wavelet transform is a multi-resolution analysis method that is useful for analysis of temporal and spectral properties of non-stationary signals such as speech and audio signals. We propose new feature parameters extracted from the wavelet transformed signal for discrimination of music and speech. First, wavelet coefficients are obtained on the frame-by-frame basis. The analysis frame size is set to 20 ms. A parameter $E_{sum}$ is then defined by adding the difference of magnitude between adjacent wavelet coefficients in each scale. The maximum and minimum values of $E_{sum}$ for period of 2 seconds, which corresponds to the discrimination duration, are used as feature parameters for discrimination of music and speech. To evaluate the performance of the proposed feature parameters for music and speech discrimination, the accuracy of music and speech discrimination is measured for various types of music and speech signals. In the experiment every 2-second data is discriminated as music or speech, and about 93% of music and speech segments have been successfully detected.
Discrimination between speech and music is important in many multimedia applications. In this paper, focusing on the spectral change characteristics of speech and music, we propose a new method of speech/music discrimination based on cepstral distance. Instead of using cepstral distance between the frames with fixed interval, the minimum of cepstral distances among neighbor frames is employed to increase discriminability between fast changing music and speech. And, to prevent misclassification of speech segments including short pause into music, short pause segments are excluded from computing cepstral distance. The experimental results show that proposed method yields the error rate reduction of$68\%$, in comparison with the conventional approach using cepstral distance.
Discrimination between speech and music is important in many multimedia applications. In our previous work, focusing on the spectral change characteristics of speech and music, we presented a method using the mean of minimum cepstral distances (MMCD), and it showed a very high discrimination performance. In this paper, to further improve the performance, we propose to employ time-averaged MFCC in computing the MMCD. Our experimental results show that the proposed method enhances the discrimination between speech and music. Moreover, the proposed method overcomes the weakness of the conventional MMCD method whose performance is relatively sensitive to the choice of the frame interval to compute the MMCD.
본 논문에서는 각 특징 파라미터 조합의 음성/음악 분류 성능을 비교 분석하였다. 음향신호는 3가지(음성, 음악, 음성+음악)로 분류하였다. 본 실험에서는 분류 특징으로 멜캡스트럼, 에너지, 영교차 3가지 형태가 사용되었다. 음성/음악 분류 성능이 가장 좋은 특징간의 상호 조합을 비교 분석하였다. 실험결과 멜캡스트럼, 영교차 조합이 가장 좋은 결과(음성: 95.1%, 음악: 61.9%, 음성+음악: 55.5%)를 보인다는 것을 확인할 수 있었다.
본 논문에서 우리는 음향신호에서 음성과 음악을 분류하는 음성/음악 분류실험에 사용되는 특징들간의 상호조합을 비교하였다. 음향신호는 3가지 (음성, 음악, 음성+음악)와 2가지 (음성, 음악)로 분류하였다. 실험은 멜캡스트럼, 에너지, 영교차를 특징으로 사용하였고, 음성/음악 분류성능이 가장 좋은 특징간 상호조합을 모색하였다. 분류 알고리즘으로는 Gaussian Mixture Model (GMM)을 이용하였으며, GMM에 의한 데이터 모델링 전에 각기 다른 특징들을 하나의 특징공간에서 결합하였다. 실험결과 3가지 분류기준 적용시에는 멜캡스트럼, 영교차 조합이 가장 좋은 결과 (음성: 95.1%, 음악: 61.9%, 음성+음악: 55.5%)를 보였고, 2가지 분류기준 적용시에는 멜캡스트럼, 에너지 조합과 멜캡스트럼, 에너지, 영교차 조합이 가장 좋은 결과 (음성: 98.9%, 음악: 100%)를 보였다.
In this study, we propose a speech/music discrimination method using spectral peak track analysis. The proposed method uses the spectral peak track's duration at the same frequency channel for feature parameter. And use the duration threshold to discriminate the speech/music. Experiment result, correct discrimination ratio varies according to threshold, but achieved a performance comparable to another method and has a computational efficient for discrimination.
International Journal of Fuzzy Logic and Intelligent Systems
/
제10권1호
/
pp.7-11
/
2010
In this paper, we propose an improved speech/music discrimination method based on a feature combination and dimensionality reduction approach. To improve discrimination ability, we use a feature based on spectral duration analysis and employ the hierarchical dimensionality reduction (HDR) method to reduce the effect of correlated features. Through various kinds of experiments on speech and music, it is shown that the proposed method showed high discrimination results when compared with conventional methods.
본 연구에서는 스펙트럼 분석과 신경망을 이용한 효과적인 음성/음악 분류 방법을 제안한다. 제안하는 방법은 스펙트럼을 분석하여 스펙트럴 피크 트랙에서 지속성 특징 파라미터인 MSDF(Maximum Spectral Duration Feature)를 추출하고 기존의 특징 파라미터인 MFSC(Mel Frequency Spectral Coefficients)와 결합하여 음성/음악 분류기의 특징으로 사용한다. 그리고 신경망을 음성/음악 분류기로 사용하였으며, 제안하는 방법의 성능 평가를 위해 학습 패턴 선별과 양, 신경망 구성에 따른 다양한 성능 평가를 수행하였다. 음성/음악 분류 결과 기존의 방법에 비해 성능 향상과 학습 패턴의 선별과 모델 구성에 따른 안정성을 확인할 수 있었다. MSDF와 MFSC를 특징 파라미터로 사용하고 50초 이상의 학습 패턴을 사용할 때 음성에 대해서는 94.97%, 음악에 대해서는 92.38%의 분류율을 얻었으며, MFSC만 사용할 때보다 음성은 1.25%, 음악은 1.69%의 향상된 성능을 얻었다.
Discrimination between speech and music is important in many multimedia applications. Previously we proposed a new parameter for speech/music discrimination, the mean of minimum cepstral distances (MMCD), and it outperformed the conventional parameters. One weakness of MMCD is that its performance depends on range of candidate frames to compute the minimum cepstral distance, which requires the optimal selection of the range experimentally. In this paper, to alleviate the problem, we propose a multi-dimensional MMCD parameter which consists of multiple MMCDS with combination of different candidate frame ranges. Experimental results show that the multi-dimensional MMCD parameter yields an error rate reduction of 22.5% compared with the optimally chosen one-dimensional MMCD parameter.
주파수 분석을 통해 음성과 음악의 특성을 살펴보면, 대부분 악기는 특정 주파수 소리를 지속적으로 내도록 고안되어 있다는 것을 알 수 있고, 음성은 조음 현상에 의해서 점차적인 주파수 변화가 발생하는 것을 알 수 있다. 본 논문에서는 이러한 음성과 음악이 갖고 있는 주파수 변화 특성을 이용하여 음성과 음악을 구별하는 방법을 제안한다. 즉, 음성과 음악을 구분해 주는 특성 값으로서 주파수 변화율을 사용하고자 한다. 제안한 주파수 변화율인 STR (spectral transition rate) 기반의 SMD (speech music discrimination) 실험 결과, 기존의 알고리즘보다 빠른 응답 속도에서 상대적으로 높은 성능을 보임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.