• 제목/요약/키워드: Speech/Music Classification Algorithm

검색결과 17건 처리시간 0.018초

Adaptive Kernel Function of SVM for Improving Speech/Music Classification of 3GPP2 SMV

  • Lim, Chung-Soo;Chang, Joon-Hyuk
    • ETRI Journal
    • /
    • 제33권6호
    • /
    • pp.871-879
    • /
    • 2011
  • Because a wide variety of multimedia services are provided through personal wireless communication devices, the demand for efficient bandwidth utilization becomes stronger. This demand naturally results in the introduction of the variable bitrate speech coding concept. One exemplary work is the selectable mode vocoder (SMV) that supports speech/music classification. However, because it has severe limitations in its classification performance, a couple of works to improve speech/music classification by introducing support vector machines (SVMs) have been proposed. While these approaches significantly improved classification accuracy, they did not consider correlations commonly found in speech and music frames. In this paper, we propose a novel and orthogonal approach to improve the speech/music classification of SMV codec by adaptively tuning SVMs based on interframe correlations. According to the experimental results, the proposed algorithm yields improved results in classifying speech and music within the SMV framework.

EVS 코덱에서 보청기를 위한 RNN 기반의 음성/음악 분류 성능 향상 (Improvement of Speech/Music Classification Based on RNN in EVS Codec for Hearing Aids)

  • 강상익;이상민
    • 재활복지공학회논문지
    • /
    • 제11권2호
    • /
    • pp.143-146
    • /
    • 2017
  • 본 논문에서는 recurrent neural network (RNN)을 이용하여 보청기 시스템을 위한 기존의 3GPP enhanced voice services (EVS) 코덱의 음성/음악 분류 성능을 향상시키는 방법을 제시한다. 구체적으로, EVS의 음성/음악 분류 알고리즘에서 사용된 특징벡터만을 사용하여 효과적으로 RNN을 구성한 분류기법을 제시한다. 다양한 음악장르 및 잡음 환경에 대해 시스템의 성능을 평가한 결과 RNN을 이용하였을 때 기존의 EVS의 방법보다 우수한 음성/음악 분류 성능을 보였다.

오디오 부호화기를 위한 스펙트럼 변화 및 MFCC 기반 음성/음악 신호 분류 (Speech/Music Signal Classification Based on Spectrum Flux and MFCC For Audio Coder)

  • 이상길;이인성
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.239-246
    • /
    • 2023
  • 본 논문에서는 오디오 부호화기를 위한 스펙트럼 변화 파라미터와 Mel Frequency Cepstral Coefficients(MFCC) 파라미터를 이용하여 음성과 음악 신호를 분류하는 개루프 방식의 알고리즘을 제안한다. 반응성을 높이기 위해 단구간 특징 파라미터로 MFCC를 사용하고 정확도를 높이기 위해 장구간 특징 파라미터로 스펙트럼 변화를 사용하였다. 전체적인 음성/음악 신호 분류 결정은 단구간 분류와 장구간 분류를 결합하여 이루어진다. 패턴인식을 위해 Gaussian Mixed Model(GMM)을 사용하였고, Expectation Maximization(EM) 알고리즘을 사용하여 최적의 GMM 파라미터를 추출하였다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 다양한 오디오 음원에서 평균적으로 1.5% 분류 오류율을 보였고 단구간 단독 분류 방법 보다 0.9%, 장구간 단독 분류 방법보다 0.6%의 분류 오류율의 성능 개선을 이룰 수 있었다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 USAC 오디오 분류 방법보다 타악기 음악 신호에서 9.1% 분류 오류율, 음성신호에서 5.8% 분류 오류율의 성능 개선을 이룰 수 있었다.

MUSIC 스펙트럼을 이용한 잡음환경에서의 목표 신호 구간 검출 (Target signal detection using MUSIC spectrum in noise environments)

  • 박상준;정상배
    • 말소리와 음성과학
    • /
    • 제4권3호
    • /
    • pp.103-110
    • /
    • 2012
  • In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. Using the inverse of the eigenvalue-weighted eigen spectra, the algorithm detects the DOAs of multiple sources. To apply the algorithm in target signal detection for GSC-based beamforming, we utilize its spectral response for the DOA of the target source in noisy conditions. The performance of the proposed target signal detection method is compared with those of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics (ROC) curves.

SMV코덱의 음성/음악 분류 성능 향상을 위한 최적화된 가중치를 적용한 입력벡터 기반의 SVM 구현 (Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Codec Employing SVM Based on Discriminative Weight Training)

  • 김상균;장준혁;조기호;김남수
    • 한국음향학회지
    • /
    • 제28권5호
    • /
    • pp.471-476
    • /
    • 2009
  • 본 논문에서는 변별적 가중치 학습 (discriminative weight training) 기반의 최적화된 가중치를 가지는 입력벡터를 구성하여 support vector machine (SVM)을 이용한 기존의 3GPP2 selectable mode vocoder (SMV)코덱의 음성/음악 분류 성능을 향상 시키는 방법을 제안한다. 구체적으로, 최소 분류 오차 minimum classification error (MCE) 방법을 도입하여, 최적화된 가중치를 각각의 특징벡터별로 부가한 SVM을 적용하여 기존의 가중치를 고려하지 않은 SVM 기반의 알고리즘과 비교하였으며, 우수한 음성/음악 분류 성능을 보였다.

3GPP2 SMV의 실시간 음성/음악 분류 성능 향상을 위한 Gaussian Mixture Model의 적용 (Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Based on GMM)

  • 송지현;이계환;장준혁
    • 한국음향학회지
    • /
    • 제26권8호
    • /
    • pp.390-396
    • /
    • 2007
  • 본 논문에서는 음성 인식과 음악 인식에서 뛰어난 성능을 보이는 Expectation-Maximization(EM) 알고리즘 기반의 패턴인식기법인 가우시안 혼합모델(Gaussian Mixture Model, GMM)을 이용하여 기존의 3GPP2 Selectable Mode Vocoder(SMV)의 실시간 음성/음악 분류 성능을 향상 시키는 방법을 제안한다 SMV의 음성/음악 실시간 분류 알고리즘에서 사용된 특징벡터와 분류방법을 분석하고, 이를 기반으로 분류성능향상을 위해 패턴인식 알고리즘인 GMM을 도입한다. 구체적으로, SMV의 음성/음악 분류알고리즘에서 사용되어진 특징벡터만을 선택적으로 사용하여 효과적인 GMM을 구성한 실시간 분류기법이 제시되었다. SMV의 음성/음악 분류에 적용한 GMM의 성능 평가를 위해 SMV 원래의 분류알고리즘과 비교하였으며, 다양한 음악장르에 대해 시스템의 성능을 평가한 결과 GMM을 이용하였을 때 기존의 SMV의 방법보다 우수한 음성/음악 분류 성능을 보였다.

변별적 가중치 학습을 이용한 3GPP2 SVM의 실시간 음성/음악 분류 성능 향상 (Enhancement of Speech/Music Classification for 3GPP2 SMV Codec Employing Discriminative Weight Training)

  • 강상익;장준혁;이성로
    • 한국음향학회지
    • /
    • 제27권6호
    • /
    • pp.319-324
    • /
    • 2008
  • 본 논문에서는 변별적 가중치 학습 (discriminative weight training) 기반의 3GPP2 Selectable Mode Vocoder (SMV) 실시간 음성/음악 분류 성능을 향상 시키는 방법을 제안한다. SMV의 음성/음악 실시간 분류 알고리즘에서 사용된 특징벡터와 분류방법을 분석하고, 이를 기반으로 분류성능향상을 위해 MCE (minimum classification error)방법을 도입하여, 각 특징 백터별로 다른 가중치를 적용하는 음성/음악 결정법 (decision rule)을 제시한다. 구체적으로 SMV의 음성/음악 분류알고리즘에서 사용되어진 특징벡터만을 선택적으로 사용하여 가중치를 적용한 값을 기하 평균한 값을 문턱값과 비교하는 실시간 분류기법이 제시되었다. SMV의 음성/음악 분류에 제안한 방법의 성능 평가를 위해 SMV 원래의 분류알고리즘과 비교하였으며, 다양한 음악장르에 대해 시스템의 성능을 평가한 결과 가중치를 적용하였을 때 기존의 SMV의 방법보다 우수한 음성/음악 분류 성능을 보였다.

SVM 기반 음성/음악 분류기의 효율적인 임베디드 시스템 구현 (Efficient Implementation of SVM-Based Speech/Music Classification on Embedded Systems)

  • 임정수;장준혁
    • 한국음향학회지
    • /
    • 제30권8호
    • /
    • pp.461-467
    • /
    • 2011
  • 제한된 대역폭을 효율적으로 사용하기 위해서 도입된 가변 전송률은 먼저 신호의 정확한 분류를 필요로 한다. 특히 멀티미디어 서비스가 보편화 되면서 음성/음악 신호 분류의 중요성도 높아지게 되었다. 음성/음악 분류기 중, 서포트벡터머신 (SVM)을 이용한 분류기는 높은 분류 정확도로 주목받고 있다. 그러나 SVM는 많은 계산량과 저장 공간을 요구하므로 효율적인 구현이 요구되며, 특히 임베디드 시스템과 같이 자원이 제한 적인 경우에는 더욱 그러하다. 본 논문에서는 먼저 SVM을 이용한 음성/음악 분류기의 임베디드 시스템으로의 구현을 실행시간과 에너지소비의 관점에서 분석하고, 효율적인 구현을 위한 두가지 방법들을 제안한다. 서포트벡터의 판별결과에의 기여도를 바탕으로 기여도가 낮은 벡터들을 제외하는 방법과, 음성/음악 신호에 기본적으로 존재하는 각 프레임간의 상관관계를 이용하여 입력신호의 일부를 건너뛰는 방법이다. 이 기법들은 SVM의 학습 시 사용되는 다른 최적화 기법에 관계없이 적용이 가능하며, 실험을 통해 분류의 정확도, 실행시간, 그리고 에너지소비의 관점에서 그 성능을 증명하였다.

음성/음악 분류 향상을 위한 2차 조건 사후 최대 확률기법 기반 SVM (Improving SVM with Second-Order Conditional MAP for Speech/Music Classification)

  • 임정수;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제48권5호
    • /
    • pp.102-108
    • /
    • 2011
  • Support vector machine (SVM)은 패턴인식 분야에 많이 사용되어지고 있고 그 한 예로서 3GPP2 selectable mode vocoder(SMV)와 같은 규격화된 코덱에 쓰여 코덱의 음성/음악 분류 성능을 향상시킬 수 있다. 본 논문에서는 SVM을 개선시켜 음성/음악의 분류성능을 더욱 향상시키는 새로운 방법을 제안한다. 음성/음악신호의 각 프레임들은 서로 강한 상관관계를 가지고 있는데, 이를 바탕으로 2차 조건 사후 최대 확률기법을 SVM에 적용하여 음성/음악 분류성능을 향상시킨다. 또한 SVM을 학습시킬 때 적용되는 기존의 기법들과는 달리 제안되는 기법은 SVM이 패턴분류를 행할 때 사용된다. 그렇기 때문에 기존의 기법들과 독립적으로 개발되고 사용될 수 있고, 따라서 패턴분류의 성능을 한층 더 향상시킬 수 있다. 실험을 통해 제안된 기법의 독립성과 성능향상을 기존의 기법들과 비교하여 증명하였다.

SVM의 미세조정을 통한 음성/음악 분류 성능향상 (Fine-tuning SVM for Enhancing Speech/Music Classification)

  • 임정수;송지현;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.141-148
    • /
    • 2011
  • Support vector machine (SVM)은 패턴인식 분야에 많이 사용되어지고 있다. 한 예로서 3GPP2 selectable mode vocoder (SMV)와 같은 규격화된 코덱에 쓰여 코덱의 음성/음악 분류 성능을 향상시킬 수 있다. 본 논문에서는 SVM을 개선시켜 음성/음악의 분류성능을 향상시키는 새로운 방법을 제안한다. SVM을 학습시킬 때 적용되는 기존의 기법들과는 달리 제안되는 기법은 SVM이 패턴분류를 행할 때 사용된다. 그렇기 때문에 기존의 기법들과 독립적으로 개발되고 사용될 수 있고, 따라서 패턴분류의 성능을 한층 더 향상시킬 수 있다. 이를 위해 먼저 radial basis function의 커널 width 파라미터가 SVM의 패턴분류에 미치는 영향을 분석해 보았다. 분석한 결과, 커널 width 파라미터를 가지고 SVM의 패턴분류 성향을 미세 조정할 수 있다는 것을 알았다. 또한 음성신호의 각 프레임 간의 상관관계 (correlation)을 확인하고 이를 커널 width 파라미터조절의 길잡이로 삼았다. 실험을 통해, 제안된 기법이 SVM의 성능을 향상시킬 수 있음을 증명하였다.