Because a wide variety of multimedia services are provided through personal wireless communication devices, the demand for efficient bandwidth utilization becomes stronger. This demand naturally results in the introduction of the variable bitrate speech coding concept. One exemplary work is the selectable mode vocoder (SMV) that supports speech/music classification. However, because it has severe limitations in its classification performance, a couple of works to improve speech/music classification by introducing support vector machines (SVMs) have been proposed. While these approaches significantly improved classification accuracy, they did not consider correlations commonly found in speech and music frames. In this paper, we propose a novel and orthogonal approach to improve the speech/music classification of SMV codec by adaptively tuning SVMs based on interframe correlations. According to the experimental results, the proposed algorithm yields improved results in classifying speech and music within the SMV framework.
본 논문에서는 recurrent neural network (RNN)을 이용하여 보청기 시스템을 위한 기존의 3GPP enhanced voice services (EVS) 코덱의 음성/음악 분류 성능을 향상시키는 방법을 제시한다. 구체적으로, EVS의 음성/음악 분류 알고리즘에서 사용된 특징벡터만을 사용하여 효과적으로 RNN을 구성한 분류기법을 제시한다. 다양한 음악장르 및 잡음 환경에 대해 시스템의 성능을 평가한 결과 RNN을 이용하였을 때 기존의 EVS의 방법보다 우수한 음성/음악 분류 성능을 보였다.
본 논문에서는 오디오 부호화기를 위한 스펙트럼 변화 파라미터와 Mel Frequency Cepstral Coefficients(MFCC) 파라미터를 이용하여 음성과 음악 신호를 분류하는 개루프 방식의 알고리즘을 제안한다. 반응성을 높이기 위해 단구간 특징 파라미터로 MFCC를 사용하고 정확도를 높이기 위해 장구간 특징 파라미터로 스펙트럼 변화를 사용하였다. 전체적인 음성/음악 신호 분류 결정은 단구간 분류와 장구간 분류를 결합하여 이루어진다. 패턴인식을 위해 Gaussian Mixed Model(GMM)을 사용하였고, Expectation Maximization(EM) 알고리즘을 사용하여 최적의 GMM 파라미터를 추출하였다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 다양한 오디오 음원에서 평균적으로 1.5% 분류 오류율을 보였고 단구간 단독 분류 방법 보다 0.9%, 장구간 단독 분류 방법보다 0.6%의 분류 오류율의 성능 개선을 이룰 수 있었다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 USAC 오디오 분류 방법보다 타악기 음악 신호에서 9.1% 분류 오류율, 음성신호에서 5.8% 분류 오류율의 성능 개선을 이룰 수 있었다.
In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. Using the inverse of the eigenvalue-weighted eigen spectra, the algorithm detects the DOAs of multiple sources. To apply the algorithm in target signal detection for GSC-based beamforming, we utilize its spectral response for the DOA of the target source in noisy conditions. The performance of the proposed target signal detection method is compared with those of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics (ROC) curves.
본 논문에서는 변별적 가중치 학습 (discriminative weight training) 기반의 최적화된 가중치를 가지는 입력벡터를 구성하여 support vector machine (SVM)을 이용한 기존의 3GPP2 selectable mode vocoder (SMV)코덱의 음성/음악 분류 성능을 향상 시키는 방법을 제안한다. 구체적으로, 최소 분류 오차 minimum classification error (MCE) 방법을 도입하여, 최적화된 가중치를 각각의 특징벡터별로 부가한 SVM을 적용하여 기존의 가중치를 고려하지 않은 SVM 기반의 알고리즘과 비교하였으며, 우수한 음성/음악 분류 성능을 보였다.
본 논문에서는 음성 인식과 음악 인식에서 뛰어난 성능을 보이는 Expectation-Maximization(EM) 알고리즘 기반의 패턴인식기법인 가우시안 혼합모델(Gaussian Mixture Model, GMM)을 이용하여 기존의 3GPP2 Selectable Mode Vocoder(SMV)의 실시간 음성/음악 분류 성능을 향상 시키는 방법을 제안한다 SMV의 음성/음악 실시간 분류 알고리즘에서 사용된 특징벡터와 분류방법을 분석하고, 이를 기반으로 분류성능향상을 위해 패턴인식 알고리즘인 GMM을 도입한다. 구체적으로, SMV의 음성/음악 분류알고리즘에서 사용되어진 특징벡터만을 선택적으로 사용하여 효과적인 GMM을 구성한 실시간 분류기법이 제시되었다. SMV의 음성/음악 분류에 적용한 GMM의 성능 평가를 위해 SMV 원래의 분류알고리즘과 비교하였으며, 다양한 음악장르에 대해 시스템의 성능을 평가한 결과 GMM을 이용하였을 때 기존의 SMV의 방법보다 우수한 음성/음악 분류 성능을 보였다.
본 논문에서는 변별적 가중치 학습 (discriminative weight training) 기반의 3GPP2 Selectable Mode Vocoder (SMV) 실시간 음성/음악 분류 성능을 향상 시키는 방법을 제안한다. SMV의 음성/음악 실시간 분류 알고리즘에서 사용된 특징벡터와 분류방법을 분석하고, 이를 기반으로 분류성능향상을 위해 MCE (minimum classification error)방법을 도입하여, 각 특징 백터별로 다른 가중치를 적용하는 음성/음악 결정법 (decision rule)을 제시한다. 구체적으로 SMV의 음성/음악 분류알고리즘에서 사용되어진 특징벡터만을 선택적으로 사용하여 가중치를 적용한 값을 기하 평균한 값을 문턱값과 비교하는 실시간 분류기법이 제시되었다. SMV의 음성/음악 분류에 제안한 방법의 성능 평가를 위해 SMV 원래의 분류알고리즘과 비교하였으며, 다양한 음악장르에 대해 시스템의 성능을 평가한 결과 가중치를 적용하였을 때 기존의 SMV의 방법보다 우수한 음성/음악 분류 성능을 보였다.
제한된 대역폭을 효율적으로 사용하기 위해서 도입된 가변 전송률은 먼저 신호의 정확한 분류를 필요로 한다. 특히 멀티미디어 서비스가 보편화 되면서 음성/음악 신호 분류의 중요성도 높아지게 되었다. 음성/음악 분류기 중, 서포트벡터머신 (SVM)을 이용한 분류기는 높은 분류 정확도로 주목받고 있다. 그러나 SVM는 많은 계산량과 저장 공간을 요구하므로 효율적인 구현이 요구되며, 특히 임베디드 시스템과 같이 자원이 제한 적인 경우에는 더욱 그러하다. 본 논문에서는 먼저 SVM을 이용한 음성/음악 분류기의 임베디드 시스템으로의 구현을 실행시간과 에너지소비의 관점에서 분석하고, 효율적인 구현을 위한 두가지 방법들을 제안한다. 서포트벡터의 판별결과에의 기여도를 바탕으로 기여도가 낮은 벡터들을 제외하는 방법과, 음성/음악 신호에 기본적으로 존재하는 각 프레임간의 상관관계를 이용하여 입력신호의 일부를 건너뛰는 방법이다. 이 기법들은 SVM의 학습 시 사용되는 다른 최적화 기법에 관계없이 적용이 가능하며, 실험을 통해 분류의 정확도, 실행시간, 그리고 에너지소비의 관점에서 그 성능을 증명하였다.
Support vector machine (SVM)은 패턴인식 분야에 많이 사용되어지고 있고 그 한 예로서 3GPP2 selectable mode vocoder(SMV)와 같은 규격화된 코덱에 쓰여 코덱의 음성/음악 분류 성능을 향상시킬 수 있다. 본 논문에서는 SVM을 개선시켜 음성/음악의 분류성능을 더욱 향상시키는 새로운 방법을 제안한다. 음성/음악신호의 각 프레임들은 서로 강한 상관관계를 가지고 있는데, 이를 바탕으로 2차 조건 사후 최대 확률기법을 SVM에 적용하여 음성/음악 분류성능을 향상시킨다. 또한 SVM을 학습시킬 때 적용되는 기존의 기법들과는 달리 제안되는 기법은 SVM이 패턴분류를 행할 때 사용된다. 그렇기 때문에 기존의 기법들과 독립적으로 개발되고 사용될 수 있고, 따라서 패턴분류의 성능을 한층 더 향상시킬 수 있다. 실험을 통해 제안된 기법의 독립성과 성능향상을 기존의 기법들과 비교하여 증명하였다.
Support vector machine (SVM)은 패턴인식 분야에 많이 사용되어지고 있다. 한 예로서 3GPP2 selectable mode vocoder (SMV)와 같은 규격화된 코덱에 쓰여 코덱의 음성/음악 분류 성능을 향상시킬 수 있다. 본 논문에서는 SVM을 개선시켜 음성/음악의 분류성능을 향상시키는 새로운 방법을 제안한다. SVM을 학습시킬 때 적용되는 기존의 기법들과는 달리 제안되는 기법은 SVM이 패턴분류를 행할 때 사용된다. 그렇기 때문에 기존의 기법들과 독립적으로 개발되고 사용될 수 있고, 따라서 패턴분류의 성능을 한층 더 향상시킬 수 있다. 이를 위해 먼저 radial basis function의 커널 width 파라미터가 SVM의 패턴분류에 미치는 영향을 분석해 보았다. 분석한 결과, 커널 width 파라미터를 가지고 SVM의 패턴분류 성향을 미세 조정할 수 있다는 것을 알았다. 또한 음성신호의 각 프레임 간의 상관관계 (correlation)을 확인하고 이를 커널 width 파라미터조절의 길잡이로 삼았다. 실험을 통해, 제안된 기법이 SVM의 성능을 향상시킬 수 있음을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.