• Title/Summary/Keyword: Specular Reflection

Search Result 110, Processing Time 0.027 seconds

A Study on Iriscode Extraction for Iris Recognition in Cellular Phone (휴대폰 환경에서의 홍채 인식을 위한 홍채 코드 추출에 관한 연구)

  • Jung, Dae-Sik;Park, Kang-Ryoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.813-816
    • /
    • 2005
  • 최근 휴대폰의 활용 범위는 단순히 사용자간의 통신이라는 기본적인 목적을 넘어서 다양한 기능을 제공하고 있다. 그중 휴대폰에 카메라를 탑재하여 디지털 카메라의 기능을 혼합한 휴대폰은 최근 각광을 받고 있으며 휴대폰에 탑재된 카메라의 기능은 디지털 카메라의 메가 픽셀 급 화질을 제공하는 정도의 수준으로 발전하였으며 이미 그 수요는 대중화되어 가고 있다. 이런 카메라 폰을 응용한 연구 분야로 생체 인식 기술을 적용할 수 있으며, 본 논문에서는 휴대폰 환경에서의 홍채 인식을 위한 홍채 영역에서의 홍채 코드 추출에 관한 방법을 제안한다. 휴대폰에서의 홍채 인식에 사용되는 홍채 코드 추출 과정은 다음과 같다. 먼저 휴대폰 카메라를 통해 얻은 메가 픽셀 급 영상($2048{\times}1536$ pixel 8bit gray Image)에서 동공위치 추적 & 홍채 영역 추출 알고리즘[1]을 이용하여 눈 영상($640{\times}480$ pixel 8bit gray Image))을 추출한다. 이렇게 추출된 눈 영상 중에 홍채 코드 인식 에러율을 좀더 낮추기 위해 눈썹영역, 안경에 의해 반사되는 반사광(Specular Reflection), 눈꺼풀 영역을 눈 영역에서 제거 하는 과정을 거친다. 이 논문에서는 위와 같은 과정을 거쳐 얻어진 홍채 영상에 그대로 극좌표 가버 필터[2]를 씌워 홍채 코드를 추출해내기 때문에 기존 보간법을 이용한 스트레칭 된 홍채 영상에서의 홍채 코드 추출보다 잘못된 홍채 코드 정보를 줄일 수 있으며 휴대폰이라는 특수한 환경에서의 홍채 코드 추출이란 점을 고려하여 가버 필터를 고주파와 저주파로 나누어 미리 설계해두어 좀더 빠르고 정확한 홍채 코드를 추출해 내는 방법을 제안한다. 실험 결과, 기존 방식보다 극좌표 가버 필터를 사용한 홍채 코드 추출 실험에서 보다 높은 인식률을 보였다.

  • PDF

Three Dimensional Volume Reconstruction of an Object from X-ray Iamges using Uniform and Simultaneous ART (USART 방법에 의한 X선 영상으로부터의 삼차원 물체의 형상 복원)

  • Roh, Young-Jun;Cho, Hyung-Suck;Kim, Hyeong-Cheol;Kim, Jong-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three-dimensional surfaces. However, those conventional visual or optical methods have inherent shortcomings such as occlusion and variant surface reflection. X-ray vision system can be a good solution to these conventional problems, since we can extract the volume information including both the surface geometry and the inner structure of any objects. In the x-ray system, the surface condition of an object, whether it is lambertian or specular, does not affect the inherent characteristics of its x-ray images. In this paper, we propose a three-dimensional x-ray imaging method to reconstruct a three dimensional structure of an object out of two dimensional x-ray image sets. To achieve this by the proposed method, two or more x-ray images projected from different views are needed. Once these images are acquired, the simultaneous algebraic reconstruction technique(SART) is usually utilized. Since the existing SART algorithms have several shortcomings such as low performance in convergence and different convergence within the reconstruction volume of interest, an advanced SART algorithm named as USART(uniform SART) is proposed to avoid such shortcomings and improve the reconstruction performance. Because, each voxel within the volume is equally weighted to update instantaneous value of its internal density, it can achieve uniform convergence property of the reconstructed volume. The algorithm is simulated on various shapes of objects such as a pyramid, a hemisphere and a BGA model. Based on simulation results the performance of the proposed method is compared with that of the conventional SART method.

Image based Shading Techniques for Surfaces with Irregular and Complex Textures Formed by Heterogeneous Materials (이종물질에 의해 복잡한 불규칙 무늬가 형성된 물체 표면의 영상 기반 셰이딩 기법)

  • Lee, Joo-Rim;Nam, Yang-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper we present a shading technique for realistic rendering of the surfaces with irregular and complex textures using a single photograph. So far, most works have been using many photographs or special photographing equipment to render the surfaces with irregular and complex textures as well as dividing texture regions manually. We present an automatic selection method of the region segmentation techniques according to properties of materials. As our technique produces a reflectance model and the approximated Bidirectional Reflection Distribution Function(BRDF) parameters, it allows the recovery of the photometric properties of diffuse, specular, isotropic or anisotropic textured objects. Also it make it possible to present several synthetic images with novel lighting conditions and views.

Prediction of moisture contents in green peppers using hyperspectral imaging based on a polarized lighting system

  • Faqeerzada, Mohammad Akbar;Rahman, Anisur;Kim, Geonwoo;Park, Eunsoo;Joshi, Rahul;Lohumi, Santosh;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.995-1010
    • /
    • 2020
  • In this study, a multivariate analysis model of partial least square regression (PLSR) was developed to predict the moisture content of green peppers using hyperspectral imaging (HSI). In HSI, illumination is essential for high-quality image acquisition and directly affects the analytical performance of the visible near-infrared hyperspectral imaging (VIS/NIR-HSI) system. When green pepper images were acquired using a direct lighting system, the specular reflection from the surface of the objects and their intensities fluctuated with time. The images include artifacts on the surface of the materials, thereby increasing the variability of data and affecting the obtained accuracy by generating false-positive results. Therefore, images without glare on the surface of the green peppers were created using a polarization filter at the front of the camera lens and by exposing the polarizer sheet at the front of the lighting systems simultaneously. The results obtained from the PLSR analysis yielded a high determination coefficient of 0.89 value. The regression coefficients yielded by the best PLSR model were further developed for moisture content mapping in green peppers based on the selected wavelengths. Accordingly, the polarization filter helped achieve an uniform illumination and the removal of gloss and artifact glare from the green pepper images. These results demonstrate that the HSI technique with a polarized lighting system combined with chemometrics can be effectively used for high-throughput prediction of moisture content and image-based visualization.

Sympathy, Seeing, and Affective Labor: Mary Shelley's (Re-)Reading of Adam Smith in Frankenstein (공감, 보기, 그리고 감정노동 -『프랑켄스타인』의 아담 스미스 다시 읽기)

  • Shin, Kyung Sook
    • Journal of English Language & Literature
    • /
    • v.58 no.2
    • /
    • pp.189-215
    • /
    • 2012
  • This paper reads Mary Shelley's Frankenstein (1818) in light of the 18th-century understanding of 'sympathy' including those of Hume and Smith and also in light of what Michael Hardt in our century has called "affective labor." I argue that the imaginative capacity and "seeing" are crucial in understanding Smith's idea of 'sympathy.' By showing how the monster's ugliness precludes any human character from sympathizing with him, Mary Shelley exposes that Smith's idea of sympathy fails to maintain social harmony. Mary Shelley revises Smith's 'sympathy' and makes it more radical by suggesting that the active affective labor could bridge the epistemological distance lying between the agent concerned and the impartial spectator. I first read Smith's idea of sympathy as an imaginative capacity which is inevitably influenced by 'seeing' and visual perception. Then I analyze the scenes in which the creature in Frankenstein fails to acquire any human sympathy due to his ugliness, and show how the specular nature of 'sympathy' is disrupted when one party is visually ugly and deformed. I conclude that affective labor and active moral reflection on the part of the spectator need to be provided when the agent concerned is 'ugly' and thus challenges our habitual epistemological boundary. Shelley's re-evaluation of Smith's sympathy, thus, suggests that affective labor may not be something that women alone have to perform, but an ethical practice that concerns all human beings and that can transform the otherwise flawed human capacity for sympathy.

Optimized TOF-PET detector using scintillation crystal array for brain imaging

  • Leem, Hyuntae;Choi, Yong;Jung, Jiwoong;Park, Kuntai;Kim, Yeonkyeong;Jung, Jin Ho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2592-2598
    • /
    • 2022
  • Research groups in the field of PET instrumentation are studying time-of-flight(TOF) technology to improve the signal-to-noise ratio of PET images. Scintillation light transport and collection plays an important role in improving the coincidence resolving time(CRT) of PET detector based on a pixelated crystal array. Four crystal arrays were designed by the different optical reflection configuration such as external reflectors and surface treatment on the CRT and compared with the light output, energy resolution and CRT. The design proposed in the study was composed of 8 × 8 LYSO crystal array consisted of 3 × 3 × 15 mm3 pixels. The entrance side was roughened while the other five surfaces were polished. Four sides of all crystal pixels were wrapped with ESR-film, and the entrance surface was covered by Teflon-tape. The design provided an excellent timing resolution of 210 ps and improved the CRT by 16% compared to the conventional method using a polishing treatment and ESR-film. This study provided a method for improving the light output and CRT of a pixelated scintillation crystal-based brain TOF PET detector. The proposed configuration might be an attractive detector design for TOF brain PET requiring fast timing performance with high cost-effectiveness.

Plasma-Assisted Molecular Beam Epitaxy of InXGa1-XN Films on C-plane Sapphire Substrates (플라즈마분자선에피탁시법을 이용한 C-면 사파이어 기판 위질화인듐갈륨박막의 에피탁시 성장)

  • Shin, Eun-Jung;Lim, Dong-Seok;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.185-189
    • /
    • 2012
  • We report plasma-assisted molecular beam epitaxy of $In_XGa_{1-X}N$ films on c-plane sapphire substrates. Prior to the growth of $In_XGa_{1-X}N$ films, GaN film was grown on the nitride c-plane sapphire substrate by two-dimensional (2D) growth mode. For the growth of GaN, Ga flux of $3.7{\times}10^{-8}$ torr as a beam equivalent pressure (BEP) and a plasma power of 150 W with a nitrogen flow rate of 0.76 sccm were fixed. The growth of 2D GaN growth was confirmed by $in-situ$ reflection high-energy electron diffraction (RHEED) by observing a streaky RHEED pattern with a strong specular spot. InN films showed lower growth rates even with the same growth conditions (same growth temperature, same plasma condition, and same BEP value of III element) than those of GaN films. It was observed that the growth rate of GaN is 1.7 times higher than that of InN, which is probably caused by the higher vapor pressure of In. For the growth of $In_xGa_{1-x}N$ films with different In compositions, total III-element flux (Ga plus In BEPs) was set to $3.7{\times}10^{-8}$ torr, which was the BEP value for the 2D growth of GaN. The In compositions of the $In_xGa_{1-x}N$ films were determined to be 28, 41, 45, and 53% based on the peak position of (0002) reflection in x-ray ${\theta}-2{\theta}$ measurements. The growth of $In_xGa_{1-x}N$ films did not show a streaky RHEED pattern but showed spotty patterns with weak streaky lines. This means that the net sticking coefficients of In and Ga, considered based on the growth rates of GaN and InN, are not the only factor governing the growth mode; another factor such as migration velocity should be considered. The sample with an In composition of 41% showed the lowest full width at half maximum value of 0.20 degree from the x-ray (0002) omega rocking curve measurements and the lowest root mean square roughness value of 0.71 nm.

Fabrication of Microwire Arrays for Enhanced Light Trapping Efficiency Using Deep Reactive Ion Etching

  • Hwang, In-Chan;Seo, Gwan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.454-454
    • /
    • 2014
  • Silicon microwire array is one of the promising platforms as a means for developing highly efficient solar cells thanks to the enhanced light trapping efficiency. Among the various fabrication methods of microstructures, deep reactive ion etching (DRIE) process has been extensively used in fabrication of high aspect ratio microwire arrays. In this presentation, we show precisely controlled Si microwire arrays by tuning the DRIE process conditions. A periodic microdisk arrays were patterned on 4-inch Si wafer (p-type, $1{\sim}10{\Omega}cm$) using photolithography. After developing the pattern, 150-nm-thick Al was deposited and lifted-off to leave Al microdisk arrays on the starting Si wafer. Periodic Al microdisk arrays (diameter of $2{\mu}m$ and periodic distance of $2{\mu}m$) were used as an etch mask. A DRIE process (Tegal 200) is used for anisotropic deep silicon etching at room temperature. During the process, $SF_6$ and $C_4F_8$ gases were used for the etching and surface passivation, respectively. The length and shape of microwire arrays were controlled by etching time and $SF_6/C_4F_8$ ratio. By adjusting $SF_6/C_4F_8$ gas ratio, the shape of Si microwire can be controlled, resulting in the formation of tapered or vertical microwires. After DRIE process, the residual polymer and etching damage on the surface of the microwires were removed using piranha solution ($H_2SO_4:H_2O_2=4:1$) followed by thermal oxidation ($900^{\circ}C$, 40 min). The oxide layer formed through the thermal oxidation was etched by diluted hydrofluoric acid (1 wt% HF). The surface morphology of a Si microwire arrays was characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi S-4800). Optical reflection measurements were performed over 300~1100 nm wavelengths using a UV-Vis/NIR spectrophotometer (Cary 5000, Agilent) in which a 60 mm integrating sphere (Labsphere) is equipped to account for total light (diffuse and specular) reflected from the samples. The total reflection by the microwire arrays sample was reduced from 20 % to 10 % of the incident light over the visible region when the length of the microwire was increased from $10{\mu}m$ to $30{\mu}m$.

  • PDF

Three-dimensional Machine Vision System based on moire Interferometry for the Ball Shape Inspection of Micro BGA Packages (마이크로 BGA 패키지의 볼 형상 시각검사를 위한 모아레 간섭계 기반 3차원 머신 비젼 시스템)

  • Kim, Min-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper focuses on three-dimensional measurement system of micro balls on micro Ball-Grid-Array(BGA) packages in-line. Most of visual inspection system still suffers from sophisticate reflection characteristics of micro balls. For accurate shape measurement of them, a specially designed visual sensor system is proposed under the sensing principle of phase shifting moire interferometry. The system consists of a pattern projection system with four projection subsystems and an imaging system. In the projection system, four subsystems have spatially different projection directions to make target objects experience the pattern illuminations with different incident directions. For the phase shifting, each grating pattern of subsystem is regularly moved by PZT actuator. To remove specular noise and shadow area of BGA balls efficiently, a compact multiple-pattern projection and imaging system is implemented and tested. Especially, a sensor fusion algorithm to integrate four information sets, acquired from multiple projections, into one is proposed with the basis of Bayesian sensor fusion theory. To see how the proposed system works, a series of experiments is performed and the results are analyzed in detail.

Simulating the Availability of Integrated GNSS Positioning in Dense Urban Areas (통합 GNSS 환경에서 도시공간 위성측위의 가용성 평가 시뮬레이션)

  • Suh, Yong-Cheol;Lee, Yang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2007
  • This paper describes the availability of the forthcoming integrated GNSS(Global Navigation Positioning System) positioning that includes GPS(Global Positioning System), Galileo, and QZSS(Quasi-Zenith Satellites System). We built a signal propagation model that identifies direct, multipath, and diffraction signals, using the principles of specular reflection and ray tracing technique. The signal propagation model was combined with 3D GIS(three-dimensional geographic information system) in order to measure the satellite visibility and positioning error factors, such as the number of visible satellites, average elevation of visible satellites, optimized DOP(dilution of position) values, and the portion of multipath-producing satellites. Since Galileo and QZSS will not be fully operational until 2010, we used a simulation in comparing GPS and GNSS positioning for a $1km{\times}1km$ developed area in Shinjuku, Tokyo. To account for local terrain variation. we divided the target area into 40,000 $5m{\times}5m$ grid cells. The number of visible satellites and that of multipath-free satellites will be greatly increased in the integrated GNSS environment while the average elevation of visible satellites will be higher in the GPS positioning. Much decreased PDOP(position dilution of precision) values indicate the appropriate satellite/user geometry of the integrated GNSS; however, in dense urban areas, multipath mitigation will be more important than the satellite/user geometry. Thus, the efforts for applying current technologies of multipath mitigation to the future GNSS environment will be necessary.