• Title/Summary/Keyword: Spectrum combination

Search Result 247, Processing Time 0.027 seconds

A Study on the Prediction of Fatigue Life by use of Probability Density Function (확률밀도함수를 이용한 피로균열 발생수명 예측에 관한 연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.453-461
    • /
    • 1999
  • The estimation of fatigue life at the design stage is very important in order to arrive at feasible and cost effective solutions considering the total lifetime of the structure and machinery compo-nents. In this study the practical procedure of prediction of fatigue life by use of cumulative damage factors based on Miner-Palmgren hypothesis and probability density function is shown with a $135,000m^3$ LNG tank being used as an example. In particular the parameters of Weibull distribution taht determine the stress spectrum are dis-cussed. At the end some of uncertainties associated with fatigue life prediction are discussed. The main results obtained from this study are as follows: 1. The practical procedure of prediction of fatigue life by use of cumulative damage factors expressed in combination of probability density function and S-N data is proposed. 2. The calculated fatigue life is influenced by the shape parameter and stress block. The conser-vative fatigue design can be achieved when using higher value of shape parameter and the stress blocks divded into more stress blocks.

  • PDF

He-Polymer Microchip Plasma (PMP) System Incorporating a Gas Liquid Separator for the Determination of Chlorine Levels in a Sanitizer Liquid

  • Oh, Joo-Suck;Kim, Y.H.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.595-598
    • /
    • 2009
  • The authors describe an analytical method to determine total chlorine in a sanitizer liquid, incorporating a lab-made He-rf-plasma within a PDMS polymer microchip. Helium was used instead of Ar to produce a plasma to achieve efficient Cl excitation. A quartz tube 1 mm i.d. was embedded in the central channel of the polymer microchip to protect it from damage. Rotational temperature of the He-microchip plasma was in the range 1350-3600 K, as estimated from the spectrum of the OH radical. Chlorine was generated in a volatilization reaction vessel containing potassium permanganate in combination of sulfuric acid and then introduced into the polymer microchip plasma (PMP). Atomic emission lines of Cl at 438.2 nm and 837.7 nm were used for analysis; no emission was observed for Ar plasma. The achieved limit of detection was 0.81 ${\mu}g\;mL^{-1}$ (rf powers of 30-70 W), which was sensitive enough to analyze sanitizers that typically contained 100-200 ${\mu}g\;mL^{-1}$ of free chlorine in chlorinated water. This study demonstrates the usefulness of the devised PMP system in the food sciences and related industries.

Ultrasonic Flaw Detection in Composite Materials Using SSP-MPSD Algorithm

  • Benammar, Abdessalem;Drai, Redouane
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1753-1761
    • /
    • 2014
  • Due to the inherent inhomogeneous and anisotropy nature of the composite materials, the detection of internal defects in these materials with non-destructive techniques is an important requirement both for quality checks during the production phase and in service inspection during maintenance operations. The estimation of the time-of-arrival (TOA) and/or time-of-flight (TOF) of the ultrasonic echoes is essential in ultrasonic non-destructive testing (NDT). In this paper, we used split-spectrum processing (SSP) combined with matching pursuit signal decomposition (MPSD) to develop a dedicated ultrasonic detection system. SSP algorithm is used for Signal-to-Noise Ratio (SNR) enhancement, and the MPSD algorithm is used to decompose backscattered signals into a linear expansion of chirplet echoes and estimate the chirplet parameters. Therefore, the combination of SSP and MPSD (SSP-MPSD) presents a powerful technique for ultrasonic NDT. The SSP algorithm is achieved by using Gaussian band pass filters. Then, MPSD algorithm uses the Maximum Likelihood Estimation. The good performance of the proposed method is experimentally verified using ultrasonic traces acquired from three specimens of carbon fibre reinforced polymer multi-layered composite materials (CFRP).

A Study on the Prediction of Tire / Road Noise (타이어 / 노면 소음 예측에 관한 연구)

  • Adrian, Xiquin;Kim, Byoung-Sam;Lee, Tae-Keun;Cha, Hwa-Dong
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.77-84
    • /
    • 2011
  • Tire manufactures have dealt with noise problem by varying the pitch of the tread. The various formulas for the variations are generally determined differently, however. Often these variations are based on a combination of trial and error, intuition, and economics. Some manufactures have models and analogs to test tread patterns and their variations. These efforts, however practical, do not determine the best variation beforehand or guarantee the best results. For this reason it was felt that a general mathematical approach for determining the best variation was needed. Moreover, the method should be completely general, easy to use, and sufficiently accurate. This paper discusses a mathematical method called Mechanical Frequency Modulation(MFM) which meets the above requirements. Thus, MFM pertains to computing an irregular time sequence of events so that the resulting excitation spectrum is shaped to a preferred form. The first part of this paper treats the theoretical basis for computing an optimum variation ; the second part discusses experimental results and simulation program which corroborate the theory.

Oroantral communication, its causes, complications, treatments and radiographic features: A pictorial review

  • Shahrour, Rama;Shah, Priya;Withana, Thimanthi;Jung, Jennifer;Syed, Ali Z
    • Imaging Science in Dentistry
    • /
    • v.51 no.3
    • /
    • pp.307-311
    • /
    • 2021
  • Purpose: An oroantral communication (OAC) is an abnormal space between the maxillary sinus and oral cavity. The causes, complications, treatment, and radiographic features of OAC in 2-dimensional and 3-dimensional imaging modalities are discussed. Materials and Methods: This pictorial review presents a broad spectrum of imaging findings of OAC. Representative radiographs depicting OAC were chosen from our database. PubMed was used to conduct a comprehensive literature search of OAC. Results: Characteristic features of OAC include discontinuity of the maxillary sinus floor, thickening of the maxillary sinus mucosa, or a combination of both. Two-dimensional imaging modalities are the method of choice for identifying discontinuities in the maxillary sinus floor. However, 3-dimensional imaging modalities are also essential for determining the status of soft tissue in the maxillary sinus. Conclusion: The integration of 2-dimensional and 3-dimensional imaging modalities is crucial for the correct diagnosis and comprehensive treatment of OAC. However, the diagnosis of OAC must be confirmed clinically to prevent unnecessary mental and financial burdens to patients.

A Study on the Material Decomposition of Dual-Energy Iodine Image by Using the Multilayer X-ray Detector (다층구조 엑스선 검출기를 이용한 이중에너지 조영제 영상의 물질 구분에 관한 연구)

  • Kim, Jun-Woo
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.465-471
    • /
    • 2021
  • Dual-energy X-ray imaging (DEI) techniques can provide X-ray images that a certain material is suppressed or emphasized by combining two X-ray images obtained from two different x-ray spectrum. In this paper, a single-shot DEI, which uses stacked two detectors (i.e., multilayer detector), is proposed to reduce the patient dose and increase throughput in angiography. The polymethyl methacrylate (PMMA) and aluminum (Al) were selected as two basis materials for material decomposition, and material-specific images are reconstructed as a vector combination of these two materials. We investigate the contrast and noise performance of material-decomposed images using iodine phantoms with various concentrations and diameters. The single-shot DEI shows comparable performances to the conventional dual-shot DEI. In particular, the single-shot DEI shows edge enhancement in material-decomposed images due to the different spatial-resolution characteristics of upper and lower detectors. This study could be useful for designing the multilayer detector including scintillators and energy-separation filter for angiography purposes.

A Design and Implementation of Software Defined Radio for Rapid Prototyping of GNSS Receiver

  • Park, Kwi Woo;Yang, Jin-Mo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.189-203
    • /
    • 2018
  • In this paper, a Software Defined Radio (SDR) architecture was designed and implemented for rapid prototyping of GNSS receiver. The proposed SDR can receive various GNSS and direct sequence spread spectrum (DSSS) signals without software modification by expanded input parameters containing information of the desired signal. Input parameters include code information, center frequency, message format, etc. To receive various signal by parameter controlling, a correlator, a data bit extractor and a receiver channel were designed considering the expanded input parameters. In navigation signal processing, pseudorange was measured based on Coordinated Universal Time (UTC) and appropriate navigation message decoder was selected by message format of input parameter so that receiver position can be calculated even if SDR is set up various GNSS combination. To validate the proposed SDR, the software was implemented using C++, CUDA C based on GPU and USRP. Experimentation has confirmed that changing the input parameters allows GPS, GLONASS, and BDS satellite signals to be received. The precision of the position from implemented SDR were measured below 5 m (Circular Error Probability; CEP) for all scenarios. This means that the implemented SDR operated normally. The implemented SDR will be used in a variety of fields by allowing prototyping of various GNSS signal only by changing input parameters.

Recent Progress and Prospect of Luminescent Solar Concentrator (발광형 태양광 집광기 최신 연구 동향)

  • Song, Hyung-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

Effects of collimator on imaging performance of Yttrium-90 Bremsstrahlung photons: Monte Carlo simulation

  • Kim, Minho;Bae, Jae Keon;Hong, Bong Hwan;Kim, Kyeong Min;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.539-545
    • /
    • 2019
  • Yttrium-90 is a useful therapeutic radioisotope for tumor treatment because of its high-energy-emitting beta rays. However, it has been difficult to select appropriate collimators and main energy windows for Y-90 Bremsstrahlung imaging using gamma cameras because of the broad energy spectra of Y-90. We used a Monte Carlo simulation to investigate the effects of collimator selection and energy windows on Y-90 Bremsstrahlung imaging. We considered both MELP and HE collimators. Various phantoms were employed in the simulation to determine the main energy window using primary-to-scatter ratios (PSRs). Imaging performance was evaluated using spatial resolution indices, imaging counts, scatter fractions, and contrast-to-noise ratios. Collimator choice slightly affected energy spectrum shapes and improved PSRs. The HE collimator performed better than the MELP collimator on all imaging performance indices (except for imaging count). We observed minor differences in SR and SF values for the HE collimator among the five simulated energy windows. The combination of an HE collimator and improved-PSR energy window produced the best CNR value. In conclusion, appropriate collimator selection is an important component of Bremsstrahlung Y-90 photon imaging and main energy window determination. We found HE collimators to be more appropriate for improving the imaging performance of Bremsstrahlung Y-90 photons.

Floating Gas Power Plants

  • Kim, Hyun-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.907-915
    • /
    • 2020
  • Specification selection, Layout, specifications and combinations of Power Drives, and Ship motions were studied for FGPP(Floating Gas-fired Power Plants), which are still needed in areas such as the Caribbean, Latin America, and Southeast Asia where electricity is not sufficiently supplied. From this study, the optimal equipment layout in ships was derived. In addition, the difference between engine and turbine was verified through LCOE(Levelized Cost of Energy) comparison according to the type and combination of Power Drives. Analysis of Hs(Significant Height of wave) and Tp(spectrum Peak Period of wave) for places where this FGPP will be tested or applied enables design according to wave characteristics in Brazil and Indonesia. Normalized Sloshing Pressures of FGPP and LNG Carrier are verified using a sloshing analysis program, which is CFD(Computational Fluid Dynamics) software developed by ABS(American Bureau of Shipping). Power Transmission System is studied with Double bus with one Circuit Breaker Topology. A nd the CFD analysis allowed us to calculate linear roll damping coefficients for more accurate full load conditions and ballast conditions. Through RAO(Response Amplitude Operator) analysis, we secured data that could minimize the movement of ships according to the direction of waves and ship placement by identifying the characteristics of large movements in the beam sea conditions. The FGPP has been granted an AIP(Approval in Principle) from a classification society, the ABS.