• Title/Summary/Keyword: Spectrum Resource Allocation

Search Result 90, Processing Time 0.028 seconds

An Effective Frequency Sharing Method using Spectrum Etiquette and Genetic Algorithm for the Coexistence of WRAN and WLAN in TV White Space (TVWS에서 스펙트럼 에티켓 및 GA를 사용한 WRAN과 WLAN의 효율적 주파수 공유기법)

  • Jeong, Won-Sik;Jang, Sung-Jeen;Yong, Seulbaro;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.83-94
    • /
    • 2012
  • Various wireless communication devices or network such as WRAN and WLAN will coexist in the TVWS(TV White Space). Because of this coexistence, the wireless devices which use the TVWS have to avoid interfering to not only licensed TV receiver and wireless microphone but also homogeneous or heterogeneous TVBD(TV Band Device)s. In this paper, we propose two frequency sharing methods for the coexistence of WLAN and WRAN in terms of interference reduction and throughput enhancement in both homogeneous and heterogeneous networks. One is the WRAN spectrum etiquette to provide more wide bandwidth for WLAN users and the other is the WLAN frequency selection methods to improve the throughput performance. The simulation results have confirmed the throughput improvement of the proposed methods. Moreover, the proposed methods is also applicable to improve the throughput performance and reduce interference of similar systems working in a cognitive manner.

Verification and Analysis for Recommendation ITU-R P.526, P.1546, P.1812 of Propagation Model Loaded in Spectrum Management Intelligent System (주파수자원분석시스템 탑재 전파모델 ITU-R P.526, P.1546, P.1812의 검증 및 분석)

  • Kim, Dong-Woo;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.247-254
    • /
    • 2021
  • Problems such as a limited frequency resource and interference between adjacent bands have been continuously raised because of rapidly developing wireless technology and communication service. In order to solve that problem, government has been developed and operating the Spectrum Management Intelligent System(SMIS). This paper compares the results simulated by SMIS with the ATDI and the Matlab coded provided by ITU-R for verification of SMIS operating for the public interests. The Recommendation ITU-R P.526, P.1546, and P.1812 among the propagation model loaded in SMIS were chosen because of the relation to the broadcasting service. The comparison and analysis result shows that the outputs derived by SMIS has the small error of less than 1 dB. This research could be utilized for the policy establishment and R&D for the frequency allocation and the interference between adjacent bands.

A Novel Frequency Allocation Algorithm for Limited Radio Resource Environments (제한된 무선 자원 환경에 적합한 주파수 자동지정 알고리즘)

  • Koo, Bonhong;Chae, Chan-Byoung;Park, Sung-Ho;Park, Hwi-Sung;Ham, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1719-1721
    • /
    • 2015
  • In this paper, we investigate a frequency assignment problem from graph theory for military communications. We propose an algorithm based on the graph coloring theory and confirm that we utilize 0.77 times lower number of frequencies. We also propose a hybrid algorithm that facilitates a trade-off between the range and the spectrum utilization gain.

Non-Orthogonal Multiple Access (NOMA) to Enhance Capacity in 5G

  • Lim, Sungmook;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.38-43
    • /
    • 2015
  • Non-orthogonal multiple access (NOMA) where all users share the entire time and frequency resource has paid attention as one of the key technologies to enhance the spectral efficiency and the total throughput. Nevertheless, as the number of users and SIC error increase, the inter-user interference and the residual interference due to the SIC error also increase, resulting in performance degradation. In order to mitigate the performance degradation, we propose grouping-based NOMA system. In the proposed scheme, all users are divided into two groups based on the distance between the BS and each user, where one utilizes the first half of the bandwidth and the other utilizes the rest in the orthogonal manner. On the other hand, users in each group share the spectrum in the non-orthogonal manner. Grouping users can reduce both the inter-user interference and residual interference due to the SIC error, so it can outperform conventional NOMA system, especially in case that the number of users and the SIC error increase. Based on that, we also present the hybrid operation of the conventional and the proposed NOMA systems. In numerical results, the total throughput of the proposed NOMA systems is compared with that of the conventional NOMA systems with regard to the number of users and SIC error. It is confirmed that the proposed NOMA system outperforms the conventional NOMA system as the number of users and the SIC error increase.

Coalition Formation Game Based Relay Selection and Frequency Sharing for Cooperative Relay Assisted Wireless D2D Networks with QoS Constraints

  • Niu, Jinxin;Tang, Wei;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5253-5270
    • /
    • 2016
  • With device-to-device (D2D) communications, an inactive user terminal can be utilized as a relay node to support multi-hop communication so that connective experience of the cell-edge user as well as the capacity of the whole system can be significantly improved. In this paper, we investigate the spectrum sharing for a cooperative relay assisted D2D communication underlying a cellular network. We formulate a joint relay selection and channel assignment problem to maximize the throughput of the system while guaranteeing the quality of service (QoS) requirements of cellular users (CUs) and D2D users (DUs). By exploiting coalition formation game theory, we propose two algorithms to solve the problem. The first algorithm is designed based on merge and split rules while the second one is developed based on single user's movement. Both of them are proved to be stable and convergent. Simulation results are presented to show the effectiveness of the proposed algorithms.

Quality of Service Tradeoff in Device to Device Communication Underlaid Cellular Infrastructure

  • Boabang, Francis;Hwang, Won-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.591-593
    • /
    • 2016
  • Device-to-device (D2D) communications underlaid cellular infrastructure is an competitive local area services technology to promote spectrum usage for next generation cellular networks. These potential can only be tap through efficient interference coordination. Previous works only concentrated on interference from D2D pairs whiles interference from CUs to D2D pairs were neglected. This work focus on solving uplink interference problem emanating from multiple CUs sharing its resource with multiple D2D pairs. The base station (BS) acting as a supervisor selfishly institute a pricing scheme to manage the interference it experience from D2D pairs based on its Quality of service (QoS) requirement. D2D pairs following the supervisor make power allocation decisions considering the price from the BS in a non-cooperative game fashion. In order for the D2D pairs to also meet their QoS requirement, they suggest a price to the BS called discount price which reflects the interference they receive from the CUs. Finally, we analyze the proposed approach.

  • PDF

Overall Cell Data Rates Analysis for Heterogenous Network Under Adaptive Modulation (이종 네트워크에서 적응변조 사용시 주파수 공유에 따른 데이터 전송률 분석)

  • Kwon, Tae-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.394-400
    • /
    • 2018
  • A heterogenous network is the one of key technologies for 5G, where one cell is divided into small cells in order to extend coverage and support high data rates. Divided cells aggravates the intercell interference problem as the cell edge increases. In order to avoid the intercell interference, it is the best to allocate the different spectrum for each cells. However, it also decreases the spectral efficiency. Therefore, the trade-off between the spectral efficiency gain and the signal quality loss by the interference should be considered for an efficient spectrum sharing in the heterogenous network. The adaptive modulation is the method to change the transmitted bit according to the channel quality, which is adopted as the standard in the most practical communication systems. It should be considered to applied the performance analysis into the practical systems. In this paper, the overall cell data rates is analyzed for the heterogenous network under the adaptive modulation. The Monte Carlo simulation results verify the correctness of the analysis.

An OFDMA-Based Next-Generation Wireless Downlink System Design with Hybrid Multiple Access and Frequency Grouping Techniques

  • Lee Won-Ick;Lee Byeong Gi;Lee Kwang Bok;Bahk Saewoong
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.115-125
    • /
    • 2005
  • This paper discusses how to effectively design a next-generation wireless communication system that can possibly provide very high data-rate transmissions and versatile quality services. In order to accommodate the sophisticated user requirements and diversified user environments of the next-generation systems, it should be designed to take an efficient and flexible structure for multiple access and resource allocation. In addition, the design should be optimized for cost-effective usage of resources and for efficient operation in a multi-cell environment. As orthogonal frequency division multiple access (OFDMA) has turned out in recent researches to be one of the most promising multiple access techniques that can possibly meet all those requirements through efficient radio spectrum utilization, we take OFDMA as the basic framework in the next-generation wireless communications system design. So, in this paper, we focus on introducing an OFDMA-based downlink system design that employs the techniques of hybrid multiple access (HMA) and frequency group (FG) in conjunction with intra-frequency group averaging (IFGA). The HMA technique combines various multiple access schemes on the basis of OFDMA system, adopting the multiple access scheme that best fits to the given user condition in terms of mobility, service, and environment. The FG concept and IFGA technique help to reduce the feedback overhead of OFDMA system and the other-cell interference (OCI) problem by grouping the sub-carriers based on coherence band-widths and by harmonizing the channel condition and OCI of the grouped sub-carriers.

Performance Analysis on Speed Quality of LTE-Maritime Considering Scenario of e-Navigation Service and the Modulation Coding Scheme(MCS) (이내비게이션 서비스 시나리오 및 변조코딩방식(MCS)을 고려한 초고속해상무선통신망(LTE-Maritime)의 전송속도 성능 분석)

  • Kim, Bu-Young;Shim, Woo-Seong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.360-365
    • /
    • 2021
  • LTE-maritime, which was built as part of the Korean e-Navigation project, has been providing a service that meets the goal of establishing a network up to 100km from the coast since J anuary 31, 2021. To provide appropriate communication services for LTE-maritime from the perspective of real users, additional performance analysis of LTE-maritime is required considering service implementation, and efficient use of spectrum resources. This paper presents the requirement of transmission speed according to the e-Navigation service scenario, and available transmission speed based on LTE modulation coding scheme (MCS) according to sea-specific ship distribution scenario and frequency resource allocation, and is cross-analyzed with results of the sea test.

Dynamic Frequency Reuse Scheme Based on Traffic Load Ratio for Heterogeneous Cellular Networks (이종 셀룰러 네트워크 환경에서 트래픽 비율에 따른 동적 주파수 재사용 기법)

  • Chung, Sungmoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2539-2548
    • /
    • 2015
  • Overcoming inter-cell interference and spectrum scarcity are major issues in heterogeneous cellular networks. Static Frequency reuse schemes have been proposed as an effective way to manage the spectrum and reduce ICI(Inter cell Interference) in cellular networks. In a kind of static frequency reuse scheme, the allocations of transmission power and subcarriers in each cell are fixed prior to system deployment. This limits the potential performance of the static frequency reuse scheme. Also, most of dynamic frequency reuse schemes did not consider small cell and the network environment when the traffic load of each cell is heavy and non-uniform. In this paper, we propose an inter-cell resource allocation algorithm that dynamically optimizes subcarrier allocations for the multi-cell heterogeneous networks. The proposed dynamic frequency reuse scheme first finds the subcarrier usage in each cell-edge by using the exhaustive search and allocates subcarrier for all the cells except small cells. After that it allocates subcarrier for the small cell and then iteratively repeats the process. Proposed dynamic frequency reuse scheme performs better than previous frequency reuse schemes in terms of the throughput by improving the spectral efficiency due to it is able to adapt the network environment immediately when the traffic load of each cell is heavy and non-uniform.