• Title/Summary/Keyword: Spectrum Estimation

Search Result 532, Processing Time 0.023 seconds

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

Estimation on Altitudinal Spectrum of Suitability for Four Species of the Mayfly Genus Ephemera (Ephemeroptera: Ephemeridae) Using Probability Distribution Models (확률분포모형을 이용한 하루살이속(Ephemera) 4종의 고도구배에 따른 서식처적합도 평가)

  • Dongsoo Kong;Bomi Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.4
    • /
    • pp.302-315
    • /
    • 2023
  • Distribution characteristics and altitudinal gradient of four species (E. strigata, E. separigata, E. orientalis-sachalinensis group) of the mayfly genus Ephemera (Order Ephemeroptera) were analyzed with probability distribution models (exponential, normal, lognormal, logistic, Weibull, gamma, beta, Gumbel). Data was collected from 23,846 sampling units of 6,787 sites in Korea from 2010 to 2021. The beta distribution model showed the best fit for positively skewed E. orientalis-sachalinensis and little-skewed E. strigata along with altitudinal gradient. The reversed lognormal distribution model showed the best-fit for negatively skewed E. separigata. E. orientalis-sachalinensis distributed at the range of altitude 1~700 m (mean 251 m, median 226 m, mode 124 m, and standard deviation 161 m), E. strigata distributed at the range of altitude 5~871 m (mean 474 m, median 478 m, mode 492 m, and standard deviation 200 m), E. separigata distributed at the range of altitude 7~846 m (mean 620 m, median 659 m, mode 760 m, and standard deviation 181 m). Altitudinal habitat suitability ranges were estimated to be 42~257 m for E. orientalis-sachalinensis, 335~644 m for E. strigata, and 641~824 m for E. separigata. Based on the altitudinal spectrum of suitability and altitude-related temperature analysis results, E. orientalis-sachalinensis was estimated to be thermophilic, E. strigata to be mesophilic, and E. separigata to be thermophobic. This is the first national-scale evaluation of the altitudinal distribution of Ephemera in Korea. These results will be used in a further research study on altitudinal shift of the species of Ephemera under climate change.

Speech Enhancement Based on Modified IMCRA Using Spectral Minima Tracking with Weighted Subband Selection (서브밴드 가중치를 적용한 스펙트럼 최소값 추적을 이용하는 수정된 IMCRA 기반의 음성 향상 기법)

  • Park, Yun-Sik;Park, Gyu-Seok;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.89-97
    • /
    • 2012
  • In this paper, we propose a novel approach to noise power estimation for speech enhancement in noisy environments. The method based on IMCRA (improved minima controlled recursive averaging) which is widely used in speech enhancement utilizes a rough VAD (voice activity detection) algorithm which excludes speech components during speech periods in order to improves the performance of the noise power estimation by reducing the speech distortion caused by the conventional algorithm based on the minimum power spectrum derived from the noisy speech. However, since the VAD algorithm is not sufficient to distinguish speech from noise at non-stationary noise and low SNRs (signal-to-noise ratios), the speech distortion resulted from the minimum tracking during speech periods still remained. In the proposed method, minimum power estimate obtained by IMCRA is modified by SMT (spectral minima tracking) to reduce the speech distortion derived from the bias of the estimated minimum power. In addition, in order to effectively estimate minimum power by considering the distribution characteristic of the speech and noise spectrum, the presented method combines the minimum estimates provided by IMCRA and SMT depending on the weighting factor based on the subband. Performance of the proposed algorithm is evaluated by subjective and objective quality tests under various environments and better results compared with the conventional method are obtained.

Precise Estimation of Nonlinear Parameter in Pulse-Like Ultrasonic Signal (펄스형 초음파 신호에서 비선형 파라미터의 정밀 추정)

  • Ha, Job;Jhang, Kyung-Young;Sasaki, Kimio;Tanaka, Hiroaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Ultrasonic nonlinearity has been considered as a solution for the detection of microcracks or interfacial delamination in a layered structure. The distinguished phenomenon in nonlinear ultrasonics is the generation of higher-order harmonic waves during the propagation. Therefore, in order to quantify the nonlinearity, the conventional method measures a parameter defined as the amplitude ratio of a second-order harmonic component and a fundamental frequency component included in the propagated ultrasonic wave signal. However, its application In field inspection is not easy at the present stage because no standard methodology has yet been made to accurately estimate this parameter. Thus, the aim of this paper is to propose an advanced signal processing technique for the precise estimation of a nonlinear ultrasonic parameter, which is based on power spectral and bispectral analysis. The method of estimating power spectrum and bispectrum of the pulse-like ultrasonic wave signal used in the commercial SAM (scanning acoustic microscopy) equipment is especially considered in this study The usefulness of the proposed method Is confirmed by experiments for a Newton ring with a continuous air gap between two glasses and a real semiconductor sample with local delaminations. The results show that the nonlinear parameter obtained tv the proposed method had a good correlation with the delamination.

Subpixel Shift Estimation in Noisy Image Using Iterative Phase Correlation of A Selected Local Region (잡음 영상에서 국부 영역의 반복적인 위상 상관도를 이용한 부화소 이동량 추정방법)

  • Ha, Ho-Gun;Jang, In-Su;Ko, Kyung-Woo;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.103-119
    • /
    • 2010
  • In this paper, we propose a subpixel shift estimation method using phase correlation with a local region for the registration of noisy images. Phase correlation is commonly used to estimate the subpixel shift between images, which is derived from analyzing shifted and downsampled images. However, when the images are affected by additive white Gaussian noise and aliasing artifacts, the estimation error is increased. Thus, instead of using the whole image, the proposed method uses a specific local region that is less affect by noises. In addition, to improve the estimation accuracy, iterative phase correlation is applied between selected local regions rather than using a fitting function. the restricted range is determined by analyzing the maximum peak and the two adjacent values of the inverse Fourier transform of the normalized cross power spectrum. In the experiments, the proposed method shows higher accuracy in registering noisy images than the other methods. Thus, the edge-sharpness and clearness in the super-resolved image is also improved.

Method of Earthquake Acceleration Estimation for Predicting Damage to Arbitrary Location Structures based on Artificial Intelligence (임의 위치 구조물의 손상예측을 위한 인공지능 기반 지진가속도 추정방법 )

  • Kyeong-Seok Lee;Young-Deuk Seo;Eun-Rim Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.71-79
    • /
    • 2023
  • It is not efficient to install a maintenance system that measures seismic acceleration and displacement on all bridges and buildings to evaluate the safety of structures after an earthquake occurs. In order to maintain this, an on-site investigation is conducted. Therefore, it takes a lot of time when the scope of the investigation is wide. As a result, secondary damage may occur, so it is necessary to predict the safety of individual structures quickly. The method of estimating earthquake damage of a structure includes a finite element analysis method using approved seismic information and a structural analysis model. Therefore, it is necessary to predict the seismic information generated at arbitrary location in order to quickly determine structure damage. In this study, methods to predict the ground response spectrum and acceleration time history at arbitrary location using linear estimation methods, and artificial neural network learning methods based on seismic observation data were proposed and their applicability was evaluated. In the case of the linear estimation method, the error was small when the locations of nearby observatories were gathered, but the error increased significantly when it was spread. In the case of the artificial neural network learning method, it could be estimated with a lower level of error under the same conditions.

CR Technology and Activation Plan for White Space Utilization (화이트 스페이스 활용을 위한 무선환경 인지 기술 및 활성화 방안)

  • Yoo, Sung-Jin;Kang, Kyu-Min;Jung, Hoiyoon;Park, SeungKeun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.779-789
    • /
    • 2014
  • Cognitive radio (CR) technology based on geo-location database access approach and/or wideband spectrum sensing approach is absolutely vital in order to recognize available frequency bands in white spaces (WSs), and efficiently utilize shared spectrums. This paper presents a new structure for the TVWS database access protocol implementation based on Internet Engineering Task Force (IETF) Protocol to Access WS database (PAWS). A wideband compressive spectrum sensing (WCSS) scheme using a modulated wideband converter is also proposed for the TVWS utilization. The developed database access protocol technology which is adopted in both the TV band device (TVBD) and the TVWS database operates well in the TV frequency bands. The proposed WCSS shows a stable performance in false alarm probability irrespective of noise variance estimation error as well as provides signal detection probabilities greater than 95%. This paper also investigates Federal Communications Commision (FCC) regulatory requirements of TVWS database as well as European Telecommunications Standards Institute (ETSI) policy related to TVWS database. A standardized protocol to achieve interoperability among multiple TVBDs and TVWS databases, which is currently prepared in the IETF, is discussed.

A Comparison Study of the Amplification Characteristics of the Seismic Observation Sites using Coda wave, Background Noise, and S-wave Energy from Fukuoka Earthquakes Series (후쿠오카 지역 발생 지진의 Coda파, 배경잡음 및 S파 에너지를 이용한 관측소의 증폭특성에 관한 비교 연구)

  • Kim, Jun Kyoung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.435-445
    • /
    • 2013
  • Since design response spectrum does not reflect local soil characteristics, site specific response spectrum of observed ground motions appears relatively higher than design response spectrum at high frequency range. These problems have been pointed out from the domestic seismic design industry. Among various estimation methods, this study used the method H/V ratio of ground motion for estimating site amplification. This method has been extended to background noise, Coda waves and S waves recently for estimating site amplification. This study applied this method to the background noise and Coda wave energy. This study analysed more than 267 background noises from 15 macro earthquakes including main Fukuoka earthquake (2005/03/20, M=6.5) and then compared to results from S waves, at 8 main domestic seismic stations. The results showed that most of the domestic seismic stations gave similar results to those from S waves. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other studies using different method can give us much information about dynamic amplification of domestic sites characteristics and site classification.

Prediction of Broadband Noise for Non-cavitation Hydrofoils using Wall-Pressure Spectrum Models (벽면변동압력을 이용한 비공동 수중익의 광대역소음 예측 연구)

  • Choi, Woen-Sug;Jeong, Seung-Jin;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Kim, Min-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.765-771
    • /
    • 2019
  • With the increase in the speed of ships and the size of ocean structures, the importance of flow noise has become increasingly critical in meeting regulatory standards. However, unlike active investigations in aeroacoustics fields for airplanes and trains, which are based on acoustic analogy methods for tonal and broadband frequency noise, only the discrete blade passing frequency noise from propellers is considered in marine fields. In this study, prediction methods for broadband noise in marine propellers and underwater appendages are investigated using FW-H Formulation1B, which can consider the mechanism of primary noise generation of trailing edge noise. The original FW-H Formulation 1B is based on the pressure correlation function tolackitsgeneralityandaccuracy. To overcome these limitations, wall-pressure spectrum models are adopted to improve the generality in fluid mediums. The comparison of the experimental results obtained in air reveals that the proposed model exhibits a higher accuracy within 5 dB. Furthermore, the prediction procedures for broadband noise for hydrofoils are established, and the estimation of broadband noise is conducted based on the results of the computational fluid dynamics.

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (II) - Development of Site Classification System (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (II) - 지반분류 개선방법)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.51-62
    • /
    • 2006
  • In the companion paper (I-Problem Statements of the Current Seismic Design Code), the current Korean seismic design code is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. In this paper, three site classification methods based on the mean shear wave velocity of the top 30m $V_{S30}$, fundamental site periods $(T_G)$ and bedrock depth were investigated and compared with each other to determine the best classification system. Not enough of a difference in the standard deviation of site coefficients $(F_a\;and\;F_v)$ to determine the best system, and neither is the difference between the average spectral accelerations and the design response spectrum of each system. However, the amplification range of RRS values based on $T_G$ were definitely concentrated on a narrow band than other classification system. It means that sites which have a similar behavior during earthquake will be classified as the same site category at the site classification system based on $T_G$. The regression curves between site coefficients and $T_G$ described the effect of soil non linearity well as the rock shaking intensity increases than the current method based on $V_{S30}$. Furthermore, it is unambiguous to determine sue category based on $T_G$ when the site investigation is performed to shallower depth less than 30m, whereas the current $V_{S30}$ is usually calculated fallaciously by extrapolating the $V_s$ of bedrock to 30m. From the results of this study, new site classification system based on $T_G$ was recommended for legions of shallow bedrock depth in Korea.