• Title/Summary/Keyword: Spectral peak valley difference

Search Result 1, Processing Time 0.02 seconds

A Weighted Feature Voting Approach for Robust and Real-Time Voice Activity Detection

  • Moattar, Mohammad Hossein;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.99-109
    • /
    • 2011
  • This paper concerns a robust real-time voice activity detection (VAD) approach which is easy to understand and implement. The proposed approach employs several short-term speech/nonspeech discriminating features in a voting paradigm to achieve a reliable performance in different environments. This paper mainly focuses on the performance improvement of a recently proposed approach which uses spectral peak valley difference (SPVD) as a feature for silence detection. The main issue of this paper is to apply a set of features with SPVD to improve the VAD robustness. The proposed approach uses a weighted voting scheme in order to take the discriminative power of the employed feature set into account. The experiments show that the proposed approach is more robust than the baseline approach from different points of view, including channel distortion and threshold selection. The proposed approach is also compared with some other VAD techniques for better confirmation of its achievements. Using the proposed weighted voting approach, the average VAD performance is increased to 89.29% for 5 different noise types and 8 SNR levels. The resulting performance is 13.79% higher than the approach based only on SPVD and even 2.25% higher than the not-weighted voting scheme.