• Title/Summary/Keyword: Spectral line profiles

Search Result 47, Processing Time 0.025 seconds

A SIMPLE GRANULE MODEL AND ITS EFFECT ON SPECTRAL LINE ASYMMETRY

  • KIM YONGCHEOL
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.77-87
    • /
    • 1998
  • The accumulated knowledge of the influence of solar granulation on spectral lines, i.e. their asymmetry, provides a key to analyze stellar spectral line asymmetries. In this paper, a simple line synthesis using a simple 'model' of granulation was calculated. By adjusting the properties of the granule model, the observed imprints of convection on spectral lines can be reproduced. Since we depict convective flows using a continuous function rather than using a few components of flows (cf. Gray and Toner 1985, 1986; dravins 1990), we were able to identify which components of convection are important in line bisector shapes. The results of this study can be summarized as follows: Firstly, the intensity contrast (i.e. temperature fluctuation), and the area coverage of up- and down-flows are the two important factors which determine the line bisector shapes. Secondly, on the contrary to the assumption of other studies, the effect of horizontal flows is non-negligible. This exercise provides a qualitative understanding of the effect of convection on spectral lines. This knowledge serves as a guideline for understanding the characteristic difference in convection for stars on either side of the 'Granulation Boundary' (Gray 1982; Gray and Nagel 1989).

  • PDF

MULTILAYER SPECTRAL INVERSION OF SOLAR Hα AND CA II 8542 LINE SPECTRA WITH HEIGHT-VARYING ABSORPTION PROFILES

  • Chae, Jongchul;Cho, Kyuhyoun;Kang, Juhyung;Lee, Kyoung-Sun;Kwak, Hannah;Lim, Eun-Kyung
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.5
    • /
    • pp.139-155
    • /
    • 2021
  • We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption profile was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption profile is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model fitting. We apply this updated MLSI to two sets of Hα and Ca II line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We find that the new version of the MLSI satisfactorily fits most of the observed line profiles of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral fibril, an umbral feature, and a fast downflow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca II 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.

Fast Spectral Inversion of the Strong Absorption Lines in the Solar Chromosphere Based on a Deep Learning Model

  • Lee, Kyoung-Sun;Chae, Jongchul;Park, Eunsu;Moon, Yong-Jae;Kwak, Hannah;Cho, Kyuhyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.46.3-47
    • /
    • 2021
  • Recently a multilayer spectral inversion (MLSI) model has been proposed to infer the physical parameters of plasmas in the solar chromosphere. The inversion solves a three-layer radiative transfer model using the strong absorption line profiles, H alpha and Ca II 8542 Å, taken by the Fast Imaging Solar Spectrograph (FISS). The model successfully provides the physical plasma parameters, such as source functions, Doppler velocities, and Doppler widths in the layers of the photosphere to the chromosphere. However, it is quite expensive to apply the MLSI to a huge number of line profiles. For example, the calculating time is an hour to several hours depending on the size of the scan raster. We apply deep neural network (DNN) to the inversion code to reduce the cost of calculating the physical parameters. We train the models using pairs of absorption line profiles from FISS and their 13 physical parameters (source functions, Doppler velocities, Doppler widths in the chromosphere, and the pre-determined parameters for the photosphere) calculated from the spectral inversion code for 49 scan rasters (~2,000,000 dataset) including quiet and active regions. We use fully connected dense layers for training the model. In addition, we utilize a skip connection to avoid a problem of vanishing gradients. We evaluate the model by comparing the pairs of absorption line profiles and their inverted physical parameters from other quiet and active regions. Our result shows that the deep learning model successfully reproduces physical parameter maps of a scan raster observation per second within 15% of mean absolute percentage error and the mean squared error of 0.3 to 0.003 depending on the parameters. Taking this advantage of high performance of the deep learning model, we plan to provide the physical parameter maps from the FISS observations to understand the chromospheric plasma conditions in various solar features.

  • PDF

CAPABILITY OF THE FAST IMAGING SOLAR SPECTROGRAPH ON NST/BBSO FOR OBSERVING FILAMENTS/PROMINENCES AT THE SPECTRAL LINES Hα, Ca II 8542, AND Ca II K

  • Ahn, Kwang-Su;Chae, Jong-Chul;Park, Hyung-Min;Nah, Jak-Young;Park, Young-Deuk;Jang, Bi-Ho;Moon, Yong-Jae
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.39-47
    • /
    • 2008
  • Spectral line profiles of filaments/prominences to be observed by the Fast Imaging Solar Spectrograph (FISS) are studied. The main spectral lines of interests are $H{\alpha}$, Ca II 8542, and Ca II K. FISS has a high spectral resolving power of $2{\times}10^5$, and supports simultaneous dual-band recording. This instrument will be installed at the 1.6m New Solar Telescope (NST) of Big Bear Solar Observatory, which has a high spatial resolution of 0.065" at 500nm. Adopting the cloud model of radiative transfer and using the model parameters inferred from pre-existing observations, we have simulated a set of spectral profiles of the lines that are emitted by a filament on the disk or a prominence at the limb. Taking into account the parameters of the instrument, we have estimated the photon count to be recorded by the CCD cameras, the signal-to-noise ratios, and so on. We have also found that FISS is suitable for the study of multi-velocity threads in filaments if the spectral profiles of Ca II lines are recorded together with $H{\alpha}$ lines.

An Analysis of the H Emission Line Profiles of the Symbiotic Star AG Peg (공생별 AG Peg의 H 방출선 윤곽 분석)

  • Lee, Kanghwan;Lee, Seong-Jae;Hyung, Siek
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The symbiotic star AG Peg is a nebulous binary system that consists of giant star (GS) and white dwarf (WD). We investigated the HI Balmer emission lines of the symbiotic nova AG Peg, observed in 1998, 2001, and 2002 at Lick Observatory. The $H{\alpha}$ and $H{\beta}$ line profiles consist of blue-shifted, red-shifted, and broad components of which intensities and width showed notable changes. The HI emission line profiles that represent the kinematics of the gaseous nebula appear to be mainly from an accretion disk in relatively large radius from the WD. Considering the line of an observer's sight, both GS and WD are located at the sky plane side by side during the 1998 observation, while the WD is in front of GS during 2002 but the WD in rear during 2001. Such a relative position and the spectral line intensity variation imply that a fairly constant outflow occurs into WD from GS which caused to maintain the rotating thick accretion disk structure responsible for the observed spectral lines.

Line Profiles of the Saturn Ring Planetary Nebula

  • Lee, Seong-Jae;Hyung, Siek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.115.1-115.1
    • /
    • 2011
  • We analyzed the line profiles of the planetary nebula (PN) NGC 7009 secured with the Keck I HIES and BOES's spectral data. The 5 positions were taken over the nebular image, 4 points on the bright rim plus 1 point at the central position. The covered spectral wavelength range was $3250{\AA}-8725{\AA}$ in these observations. We decomposed the lines of HI, HeI, HeII, CII, NIII, [ClIII], [NII], [OII], [OIII], [SII], [SIII], [ClIII], and [ArIII] using the IRAF and StarLink/Dipso. After correcting the Earth's movement and the PN's radial velocities, -48.6 & -48.9 km/s, respectively, for the Keck & BOES, we produced the line profiles in a velocity scale. The zero velocity at each line profile clearly indicates which part of the components is approaching or receding, giving a general information of the kinematical structure. Almost all of the low-to-medium excitation lines, such as [NII], [SII], [O III], and [ArIII], secured at the central position and four positions along the major & minor axes, showed 3 components, double peak + a wide wing component, suggesting the fast outflow structures are present. The overall geometry is a prolate shell which also has a fainter outer shell in the halo zone, but there appears to be some peculiar sub-structures inside the main shell. The high excitation He I, HeII, NIII lines which might be formed close to the inner boundary of the shell show unusual features, completely different from the other lines. The HeII and these high excitation lines may be indicative of a relative recent fast outflow from the central star and the permitted lines such as NIII might be affected by the innermost structure. We discuss a possible presence of a jet-like fast outflow structure in an out-flow axis different from the main axis of the spheroid shell.

  • PDF

POLARIZATION-MAGNETIC FIELD CALIBRATION CURVE (편광-자기장 눈금조정 곡선)

  • Kim, Kap-Sung
    • Publications of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.1-21
    • /
    • 1997
  • We have obtained theoretical calibration curves to convert the amount of polarization into the strength of magnetic field, by a numerical calculation of radiation transfer for the polarized spectral line of FeI $6303{\AA}$. In our calculation, three kinds of atmospheric models (VAL-C, penumbra, umbra) have been used to make a proper calibration for an active region composed of quiet, penumbral and umbral areas. It was found that firstly, the results of our calculation depend highly on a kind of atmospheric model rather than on any other input parameters used in a model. Secondly, observed line profile showed m solar spectrum atlas proved to be very similar to the calculated profiles obtained by using a penumbra model. Finally, another method except this calibration curve should be developed to estimate correctly the distribution of magnetic field in solar active region from the observation of polarized spectral line.

  • PDF

OBSERVATIONS AND SPECTRAL ANALYSES OF SOLAR FLARES

  • DING M. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.49-54
    • /
    • 2003
  • We introduce the two-dimensional spectral observations of solar flares using the Solar Tower Tele-scope of Nanjing University, China. In particular, we introduce three typical events and the methods used to analyze the data. (1) The flare of November 11, 1998, which is a limb flare. We derive the temperature and density within the flaring loop using non-LTE calculations. The results show that the loop top may be hotter and denser than other parts of the loop, which may be a result of magnetic reconnect ion above the loop. (2) The flare of March 10, 2001, which is a white-light flare that shows an emission enhancement at the near infrared continuum. We propose a model of non-thermal electron beam heating plus backwarming to interpret the observations. (3) The flare of September 29, 2002, which shows unusual line asymmetries at one flare kernel. The line asymmetries are caused by an upward moving plasma that is accelerated and heated during the flare development.

NEBULAR SPECTRUM OF PU VUL IN 2004

  • Yoo, Kye-Hwa
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.39-47
    • /
    • 2007
  • A high resolution spectrum of PU Vul obtained at Bohyunsan Astronomy Observatory on April 9, 2004 is presented. At this phase, PU Vul was an emission-line star and its continuum was very weak. Emission lines of He II, H I, [Ne IV], [N II], [O III], [Ar V ] and [Fe VII] dominated the spectrum of PU Vul. Many of them exhibited hat-top profiles with strong and multi-peaked emissions on flat-tops of their profiles. Radial velocities for these lines were measured. Origins of the spectral lines are discussed in terms of the wind and the photoionization models.

HIGH RESOLUTION SPECTROSCOPIC STUDY OF SYMBIOTIC STAR AG DRACONIS

  • KIM, SOO HYUN;YOON, TAE SEOG;OH, HYUNG-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.13-31
    • /
    • 2022
  • We observed the symbiotic star AG Dra for a total of 61 nights between April 2004 and December 2021 using the 1.8-m telescope and the high-resolution Echelle spectrograph BOES at the Bohyunsan Optical Astronomy Observatory and obtained 355 frames of spectroscopic data to investigate the variations in its spectral lines. Overnight short-term and long-term changes in prominent emission lines are examined. No short-term changes are found in the line profiles. However, the peak intensity of the Hα emission line exhibits very small variation. In the long-term period, many emission lines including He I λ5875, λ6678, λ7065 and Fe II λ5018 are found to vary reflecting the symbiotic outburst activities. It is noted that He II λ4686 and Raman-scattered O VI λ6830, λ7088 are exceptions, where no significant variations are discernible. One of the noticeable lines is the λ5018 line. Its appearance and disappearance pattern are different from other emission lines, and the line is found to appear in outburst states. The Hα and Hβ lines remain very similar in our spectroscopic monitoring campaign.