• Title/Summary/Keyword: Spectral filters

Search Result 100, Processing Time 0.028 seconds

Tracking Capability Analysis of ARGO-M Satellite Laser Ranging System for STSAT-2 and KOMPSAT-5

  • Lim, Hyung-Chul;Seo, Yoon-Kyung;Na, Ja-Kyung;Bang, Seong-Cheol;Lee, Jin-Young;Cho, Jung-Hyun;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • Korea Astronomy and Space Science Institute (KASI) has developed a mobile satellite laser ranging (SLR) system called ARGO-M since 2008 for space geodesy research and precise orbit determination technologies using SLR with mm level accuracy. ARGO-M is capable of night tracking and daylight tracking for which requires spatial, spectral and time filters due to high background noises. In this study, characteristics and specifications of ARGO-M are discussed and its tracking capabilities of night and daylight tracking are analyzed for STSAT-2B and KOMPSAT-5 through link budget. Additionally false alarm and signal detection probabilities are also analyzed depending on spectral and time filters for daylight tracking for these satellites.

Development of Color Image Processing System based on Spectral Reflectance Ratio (분광반사율에 기반한 색영상처리 시스템 개발)

  • 방상택;오현수;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.25-33
    • /
    • 2000
  • In recent year, many imaging systems have been developed, and it became increasingly important to exchange image data through the computer network. Therefore, it is required to reproduce color image independently on each imaging device. However, even if the image are same, perceived color is not always same under different viewing conditions. On the other hand, even if the image are different, we want to perceive same color under different viewing conditions. Therefore we must know the spectral reflectance information of object. We measured many reflectance human skin can be estimate using only three principal component. For Munsell color patches, five principle components were necessary to estimate the reflectance spectra. For that purpose, we have developed color image acquisition system that is composed of five band filters and CCD camera. Improved spectral reflectance of object is predicted by five band images taken by color image acquisition system and then we take account of camera's noise and component of object image for predicting accurate spectral reflectance of object. In the results, we confirmed that color difference and MSE(Mean Square Error) between measured and predicted spectral reflectance of object decreased into 0.0071 and 7.72 respectively.

  • PDF

DEEP-South: Taxonomic Classification of Asteroids Based on Johnson-Cousins Photometric System

  • Roh, Dong-Goo;Moon, Hong-Kyu;Kim, Myung-Jin;Park, Jintae;Choi, Young-Jun;Yim, Hong-Suh;Lee, Hee-Jae;Oh, Young-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2016
  • Surface mineralogy of asteroids are inferred from photometric and spectroscopic observations with the wide range of wavelengths spanning from far-ultraviolet to mid-infrared. We classify mineralogy of those objects based on their spectral absorption features and spectral slopes. Based on overall spectral shapes, mineralogical classes are divided into three broad complexes; silicates (S), carbonaceous (C) and Vestoids (V), and the end-members that do not fit within the S, C and V broad-complexes. Each of them is subdivided into individual classes. Spectral classification of asteroidal objects has been simply represented by a combination of photometric colors. For a decade, photometric data of asteroids have been grouped and classified according to their SDSS colors converted from the spectral taxonomy. However, systematic studies for asteroid taxonomy based on Johnson-Cousins filters is few, and were conducted only with a small number of objects. In this paper, we present our preliminary results for taxonomic classification of Main Belt asteroids based on KMTNet Johnson-Cousins photometric color system.

  • PDF

Algorithm for Finding the Best Principal Component Regression Models for Quantitative Analysis using NIR Spectra (근적외 스펙트럼을 이용한 정량분석용 최적 주성분회귀모델을 얻기 위한 알고리듬)

  • Cho, Jung-Hwan
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.6
    • /
    • pp.377-395
    • /
    • 2007
  • Near infrared(NIR) spectral data have been used for the noninvasive analysis of various biological samples. Nonetheless, absorption bands of NIR region are overlapped extensively. It is very difficult to select the proper wavelengths of spectral data, which give the best PCR(principal component regression) models for the analysis of constituents of biological samples. The NIR data were used after polynomial smoothing and differentiation of 1st order, using Savitzky-Golay filters. To find the best PCR models, all-possible combinations of available principal components from the given NIR spectral data were derived by in-house programs written in MATLAB codes. All of the extensively generated PCR models were compared in terms of SEC(standard error of calibration), $R^2$, SEP(standard error of prediction) and SECP(standard error of calibration and prediction) to find the best combination of principal components of the initial PCR models. The initial PCR models were found by SEC or Malinowski's indicator function and a priori selection of spectral points were examined in terms of correlation coefficients between NIR data at each wavelength and corresponding concentrations. For the test of the developed program, aqueous solutions of BSA(bovine serum albumin) and glucose were prepared and analyzed. As a result, the best PCR models were found using a priori selection of spectral points and the final model selection by SEP or SECP.

Highly Angle-tolerant Spectral Filter Based on an Etalon Resonator Incorporating a High Index Cavity

  • Noh, Tae-Hui;Yoon, Yeo-Taek;Lee, Sang-Shin;Choi, Duk-Yong;Lim, Seung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.299-304
    • /
    • 2012
  • A high angular tolerance spectral filter was realized incorporating an etalon, which consists of a $TiO_2$ cavity sandwiched between a pair of Ag/Ge mirrors. The effective angle was substantially extended thanks to the cavity's high refractive index. The device was created by embedding a 313-nm thick $TiO_2$ film in 16-nm thick Ag/Ge films through sputtering, with the Ge layer alleviating the roughness and adhesion of the Ag layer. For normal incidence, the observed center wavelength and transmission were ~900 nm and ~60%, respectively; throughout the range of $50^{\circ}$, the relative wavelength shift and transmission variation amounted to only ~0.06 and ~4%, respectively.

A New Selection Strategy of High Redshift Quasars: Medium-Band Observation with SQUEAN

  • Jeon, Yiseul;Im, Myungshin;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.78.3-78.3
    • /
    • 2015
  • About 70 high redshift quasars with $z{\geq}5$ have been discovered through combinations of standard broad-band filters to distinguish them from contaminating sources. However, among the discovered quasars so far, there is a redshift gap at $5{\leq}z{\leq}6$ due to the limitation of traditional filter sets and selection techniques. To understand the early mass growth of supermassive black holes and the final stage of the cosmic reionization, it is important to find a statistically meaningful sample of quasars with various physical properties. Here we suggest a new selection technique of high redshift quasars using medium-band filters: nine filters with bandwidths of 50nm and central wavelengths from 625 to 1025nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with R~15. We installed these filters to SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1m telescope at McDonald Observatory, and conducted test observations of known high redshift quasars at $4.7{\leq}z{\leq}6.1$ and also dwarf stars for comparison. We found differences in SED shapes between high redshift quasars and dwarf stars, determined their locations on color-color diagrams, and demonstrated that the medium-band filters can enhance the efficiency of selecting robust quasar candidates in this redshift range. In this poster, we propose an effective selection method of high redshift quasars using these medium-band filters and discuss its effect on our high redshift quasar survey.

  • PDF

Development of SQUEAN (SED Camera for Quasars in Early Universe)

  • Kim, Sanghyuk;Pak, Soojong;Lee, Hye-In;Park, Woojin;Hyun, Minhee;Im, Myunshin;Choi, Changsu;Shin, Sang-Kyo;Bok, Min-Gab
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.51.4-52
    • /
    • 2015
  • From 2010 to 2014, CQUEAN (Camera for QUasars in EArly uNiverse) has been operated for the observation at the 82 inch Otto Struve Telescope of the McDonald Observatory, US. This camera is optimized at wavelength range of 0.7 - 1.1 um with seven (g', r', I', z', Y, Iz and Is) broad-band filters for the survey of high redshift (z > 5) quasars in the early universe. We are upgrading this system to identify more details of SED (Spectral Energy Distribution) of quasar candidates and other astronomical sources. The SQUEAN is comprised of a focal reducer, a CCD camera, a new filter wheel, new auto guiding system and new control software. The new filter wheel consists of interchangeable cartridges for various wavelength and size of filters. 50 nm medium bandwidth filters from 600 - 1050 nm, seven SDSS (Sloan Digital Sky Survey) filters and Johnson-Cousin BVRI filters are installed for now. We also have a plan to use narrow band interference filters to classify high redshift quasars or to obtain SEDs of interesting astronomical sources in details more efficiently. We also developed KAP82 (Kyung Hee University Auto guiding Package for 82 inch telescope) for auto guiding software. CQUEAN and SQUEAN have been developed by CEOU (Center for the Exploration of the Origin of the Universe).

  • PDF

Design of FIR/IIR Lattice Filters using the Circulant Matrix Factorization (Circulant Matrix Factorization을 이용한 FIR/IIR Lattice 필터의 설계)

  • Kim Sang-Tae;Lim Yong-Kon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • We Propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used for spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR filter and for the case of the In filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).

SEOUL NATIONAL UNIVERSITY CAMERA II (SNUCAM-II): THE NEW SED CAMERA FOR THE LEE SANG GAK TELESCOPE (LSGT)

  • Choi, Changsu;Im, Myungshin
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.3
    • /
    • pp.71-78
    • /
    • 2017
  • We present the characteristics and the performance of the new CCD camera system, SNUCAM-II (Seoul National University CAMera system II) that was installed on the Lee Sang Gak Telescope (LSGT) at the Siding Spring Observatory in 2016. SNUCAM-II consists of a deep depletion chip covering a wide wavelength from $0.3{\mu}m$ to $1.1{\mu}m$ with high sensitivity (QE at > 80% over 0.4 to $0.9{\mu}m$). It is equipped with the SDSS ugriz filters and 13 medium band width (50 nm) filters, enabling us to study spectral energy distributions (SEDs) of diverse objects from extragalactic sources to solar system objects. On LSGT, SNUCAM-II offers $15.7{\times}15.7$ arcmin field-of-view (FOV) at a pixel scale of 0.92 arcsec and a limiting magnitude of g = 19.91 AB mag and z=18.20 AB mag at $5{\sigma}$ with 180 sec exposure time for point source detection.

Optical VSB Filtering of 12.5-GHz Spaced 64 × 12.4 Gb/s WDM Channels Using a Pair of Fabry-Perot Filters

  • Batsuren, Budsuren;Kim, Hyung Hwan;Eom, Chan Yong;Choi, Jin Joo;Lee, Jae Seung
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.63-67
    • /
    • 2013
  • We perform an optical vestigial sideband (VSB) filtering using a pair of Fabry-Perot (FP) filters. The transmittance curve of each FP filter is made to have sharp skirts using an offset between input and output coupling fibers. Moreover, the accurate periodicity of FP filters in the optical frequency domain enables the simultaneous VSB filtering of a large number of optical channels. With this VSB filtering technique, we transmit 12.5-GHz spaced $64{\times}12.4-Gb/s$ wavelength-division-multiplexing channels over a single-mode fiber up to 150 km without any dispersion compensations. When the channel spacing is reduced to 10 GHz, we achieve the spectral efficiency of 1 bit/s/Hz in conventional optical intensity modulation systems up to 125 km.