• Title/Summary/Keyword: Spectral coding

Search Result 146, Processing Time 0.034 seconds

10 GHz Multiuser Optical CDMA Based on Spectral Phase Coding of Short Pulses

  • Ruan, Wan-Yong;Won, In-Jae;Park, Jae-Hyun;Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2009
  • We propose an ultrashort pulse optical code-division multiple-access (O-CDMA) scheme based on a pseudorandom binary M-sequence spectral phase encoding and decoding of coherent mode-locked laser pulses and perform a numerical simulation to analyze its feasibility. We demonstrate the ability to properly decode any of the multiple (eight) 10 Gbit/s users by the matched code selection of the spectral phase decoder. The peak power signal to noise ratio of properly and improperly decoded $8{\times}10 Gb/s$ signals could be greater than 15 for 127 M-sequence coding.

  • PDF

Spectrally Phase Coded Waveform Discrimination at 10 GHz for Narrow Band Optical CDMA within 100 GHz Spectral Window

  • Seo, Dong-Sun;Supradeepa, V.R.
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.28-32
    • /
    • 2010
  • We demonstrate binary spectral phase coded waveform discrimination at 10 GHz for narrow band optical code-division multiple-access (NB-OCDMA) via direct electrical detection without using any optical hard-limiter. Only 9 phase-locked, 10 GHz spaced, spectral lines within a 100 GHz spectral window are used for the phase coding. Considerably high contrast ratio of 5 between signal and multiuser access interference noise can be achieved for $4{\times}10\;G\;pulse/sec$ timing coordinated OCDMA at a simple electrical receiver with 50 GHz bandwidth.

Modified Generic Mode Coding Scheme for Enhanced Sound Quality of G.718 SWB (G.718 초광대역 코덱의 음질 향상을 위한 개선된 Generic Mode Coding 방법)

  • Cho, Keun-Seok;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.119-125
    • /
    • 2012
  • This paper describes a new algorithm for encoding spectral shape and envelope in the generic mode of G.718 super-wide band (SWB). In the G.718 SWB coder, generic mode coding and sinusoidal enhancement are used for the quantization of modified discrete cosine transform (MDCT)-based parameters in the high frequency band. In the generic mode, the high frequency band is divided into sub-bands and for every sub-band the most similar match with the selected similarity criteria is searched from the coded and envelope normalized wideband content. In order to improve the quantization scheme in high frequency region of speech/audio signals, the modified generic mode by the improvement of the generic mode in G.718 SWB is proposed. In the proposed generic mode, perceptual vector quantization of spectral envelopes and the resolution increase for spectral copy are used. The performance of the proposed algorithm is evaluated in terms of objective quality. Experimental results show that the proposed algorithm increases the quality of sounds significantly.

Speech Quality of a Sinusoidal Model Depending on the Number of Sinusoids

  • Seo, Jeong-Wook;Kim, Ki-Hong;Seok, Jong-Won;Bae, Keun-Sung
    • Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.17-29
    • /
    • 2000
  • The STC(Sinusoidal Transform Coding) is a vocoding technique that uses a sinusoidal speech model to obtain high- quality speech at low data rate. It models and synthesizes the speech signal with fundamental frequency and its harmonic elements in frequency domain. To reduce the data rate, it is necessary to represent the sinusoidal amplitudes and phases with as small number of peaks as possible while maintaining the speech quality. As a basic research to develop a low-rate speech coding algorithm using the sinusoidal model, in this paper, we investigate the speech quality depending on the number of sinusoids. By varying the number of spectral peaks from 5 to 40 speech signals are reconstructed, and then their qualities are evaluated using spectral envelope distortion measure and MOS(Mean Opinion Score). Two approaches are used to obtain the spectral peaks: one is a conventional STFT (Short-Time Fourier Transform), and the other is a multiresolutional analysis method.

  • PDF

Channel Expansion Technology in MPEG Audio (MPEG 오디오의 채널 확장 기술)

  • Pang, Hee-Suk
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.714-721
    • /
    • 2011
  • MPEG audio uses the masking effect, high frequency component synthesis based on spectral band replication, and channel expansion based on parametric stereo for efficient compression of audio signals. In this paper, we present an overview of the state-of-the-art channel expansion technology in MPEG audio. We also present technical overviews and application examples to broadcasting services for HE-AAC v.2, MPEG Surround, spatial audio object coding (SAOC), and unified speech and audio coding (USAC) which are MPEG audio codecs based on the channel expansion technology.

Development of a Hearing Impairment Simulator considering Frequency Selectivity of the Hearing Impaired (난청인의 주파수 선택도를 고려한 난청 시뮬레이터 개발)

  • Joo, S.I.;Kil, S.K.;Goh, M.S.;Lee, S.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.94-102
    • /
    • 2009
  • In this paper, we propose a hearing impairment simulator considering reduced frequency selectivity of the hearing impaired, and verify it's performance through experiments. The reduced frequency selectivity was embodied by spectral smearing using linear prediction coding(LPC). The experiments are composed of 4 kinds of tests; pure tone test, speech reception threshold(SRT) test, and word recognition score(WRS) test without spectral smearing and with spectral smearing. The experiments of the hearing impairment simulator were performed with 9 subjects who have normal hearing. The amount of spectral smearing was controlled by LPC order. The percentile score of WRS test without smearing is $89.78{\pm}2.420%$. The scores of WRS with 24th LPC order and with 8th LPC order are $88.00{\pm}3.556%$ and $83.78{\pm}2.123%$ respectively. It is verified that WRS score is lowered by decreasing LPC order. This is a reasonable result considering that spectral smearing is getting heavier according to decreasing LPC order. It is confirmed that spectral smearing using LPC simulates the reduced frequency selectivity of the hearing impaired and affects the clearness of speech reception.

A Perceptual Audio Coder Based on Temporal-Spectral Structure (시간-주파수 구조에 근거한 지각적 오디오 부호화기)

  • 김기수;서호선;이준용;윤대희
    • Journal of Broadcast Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 1996
  • In general, the high quality audio coding(HQAC) has the structure of the convertional data compression techniques combined with moodels of human perception. The primary auditory characteristic applied to HQAC is the masking effect in the spectral domain. Therefore spectral techniques such as the subband coding or the transform coding are widely used[1][2]. However no effort has yet been made to apply the temporal masking effect and temporal redundancy removing method in HQAC. The audio data compression method proposed in this paper eliminates statistical and perceptual redundancies in both temporal and spectral domain. Transformed audio signal is divided into packets, which consist of 6 frames. A packet contains 1536 samples($256{\times}6$) :nd redundancies in packet reside in both temporal and spectral domain. Both redundancies are elminated at the same time in each packet. The psychoacoustic model has been improved to give more delicate results by taking into account temporal masking as well as fine spectral masking. For quantization, each packet is divided into subblocks designed to have an analogy with the nonlinear critical bands and to reflect the temporal auditory characteristics. Consequently, high quality of reconstructed audio is conserved at low bit-rates.

  • PDF

Transform Coding Based on Source Filter Model in the MDCT Domain

  • Sung, Jongmo;Ko, Yun-Ho
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.542-545
    • /
    • 2013
  • State-of-the-art voice codecs have been developed to extend the input bandwidth to enhance quality while maintaining interoperability with a legacy codec. Most of them employ a modified discrete cosine transform (MDCT) for coding their extended band. We propose a source filter model-based coding algorithm of MDCT spectral coefficients, apply it to the ITU-T G.711.1 super wideband (SWB) extension codec, and subjectively test it to validate the model. A subjective test shows a better quality over the standardized SWB codec.

2.4kbps Speech Coding Algorithm Using the Sinusoidal Model (정현파 모델을 이용한 2.4kbps 음성부호화 알고리즘)

  • 백성기;배건성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.196-204
    • /
    • 2002
  • The Sinusoidal Transform Coding(STC) is a vocoding scheme based on a sinusoidal model of a speech signal. The low bit-rate speech coding based on sinusoidal model is a method that models and synthesizes speech with fundamental frequency and its harmonic elements, spectral envelope and phase in the frequency region. In this paper, we propose the 2.4kbps low-rate speech coding algorithm using the sinusoidal model of a speech signal. In the proposed coder, the pitch frequency is estimated by choosing the frequency that makes least mean squared error between synthetic speech with all spectrum peaks and speech synthesized with chosen frequency and its harmonics. The spectral envelope is estimated using SEEVOC(Spectral Envelope Estimation VOCoder) algorithm and the discrete all-pole model. The phase information is obtained using the time of pitch pulse occurrence, i.e., the onset time, as well as the phase of the vocal tract system. Experimental results show that the synthetic speech preserves both the formant and phase information of the original speech very well. The performance of the coder has been evaluated in terms of the MOS test based on informal listening tests, and it achieved over the MOS score of 3.1.

An Efficient Representation Method for ICLD with Robustness to Spectral Distortion

  • Beack, Seung-Kwon;Seo, Jeong-Il;Kang, Kyung-Ok;Hanh, Min-Soo
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.330-333
    • /
    • 2005
  • The Inter-Channel Level Difference (ICLD) is a cue parameter to estimate spectral information in a binaural cue coding that has been recently in the spotlight as a multichannel audio signal compression technique. Even though the ICLD is an essential parameter, it is generally distorted by quantization. In this paper, a new modified ICLE representation method to minimize the quantization distortion is proposed by adopting a flexible determination of the reference channel and the unidirectional quantization. Our experimental result confirms that the proposed method improves the multichannel audio output quality even with the reduced bit-rate.

  • PDF