• Title/Summary/Keyword: Spectral amplitude coding (SAC) OCDMA

Search Result 3, Processing Time 0.017 seconds

Enhancing the Performance of Coherent Sources SAC OCDMA Networks via Spatial Multiplexing

  • Alhassan, Ahmed M.;Badruddin, Nasreen;Saad, Naufal M.;Aljunid, Syed A.
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.471-480
    • /
    • 2013
  • The beating of two or more lasers that have the same or a finite difference in the central frequencies, is the main source of noise in spectral amplitude coding optical code division multiple access (SAC OCDMA) systems. In this paper we adopt a spatial multiplexing (SM) scheme for SAC OCDMA systems to mitigate this beat noise. The results show that for different code weights and different data rates SM SAC can support a larger number of users than the conventional SAC for all different laser source configurations. However, SM SAC requires a more complex system than the conventional SAC, and almost twice as much optical component.

Effect of Line-Width of Optical Sources on Performance of Spectral Amplitude Coding Optical CDMA Systems (광원 라인폭이 Spectral Amplitude Coding Optical CDMA시스템의 성능에 미치는 영향)

  • Jhee, Yoon Kyoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.119-124
    • /
    • 2015
  • In this paper, we analyze the effect of line-width of optical sources on the performance of spectral amplitude coding (SAC) optical code division multiple-access (OCDMA) systems. For a performance analysis we use a symmetric balanced incomplete block design (BIBD) code as the code sequence because we can construct a series of code families by choosing different values of q and m. The ideal BIBD code (m=2) requires narrower line-width than the nonideal BIBD codes when the effective power is large ($P_{sr}=-10dBm$). But the nonideal BIBD codes (m>2) need narrower line-width than the ideal BIBD code when $P_{sr}=-25dBm$.

Simulative Investigation of Spectral Amplitude Coding Based OCDMA System Using Quantum Logic Gate Code with NAND and Direct Detection Techniques

  • Sharma, Teena;Maddila, Ravi Kumar;Aljunid, Syed Alwee
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.531-540
    • /
    • 2019
  • Spectral Amplitude Coding Optical Code Division Multiple Access (SAC OCDMA) is an advanced technique in asynchronous environments. This paper proposes design and implementation of a novel quantum logic gate (QLG) code, with code construction algorithm generated without following any code mapping procedures for SAC system. The proposed code has a unitary matrices property with maximum overlap of one chip for various clients and no overlaps in spectra for the rest of the subscribers. Results indicate that a single algorithm produces the same length increment for codes with weight greater than two and follows the same signal to noise ratio (SNR) and bit error rate (BER) calculations for a higher number of users. This paper further examines the performance of a QLG code based SAC-OCDMA system with NAND and direct detection techniques. BER analysis was carried out for the proposed code and results were compared with existing MDW, RD and GMP codes. We demonstrate that the QLG code based system performs better in terms of cardinality, which is followed by improved BER. Numerical analysis reveals that for error free transmission (10-9), the suggested code supports approximately 170 users with code weight 4. Our results also conclude that the proposed code provides improvement in the code construction, cross-correlation and minimization of noises.