• 제목/요약/키워드: Spectral Unmixing

검색결과 26건 처리시간 0.024초

A CLASSIFICATION METHOD BASED ON MIXED PIXEL ANALYSIS FOR CHANGE DETECTION

  • Jeong, Jong-Hyeok;Takeshi, Miyata;Takagi, Masataka
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.820-824
    • /
    • 2003
  • One of the most important research areas on remote sensing is spectral unmixing of hyper-spectral data. For spectral unmixing of hyper spectral data, accurate land cover information is necessary. But obtaining accurate land cover information is difficult process. Obtaining land cover information from high-resolution data may be a useful solution. In this study spectral signature of endmembers on ASTER acquired in October was calculated from land cover information on IKONOS acquired in September. Then the spectral signature of endmembers applied to ASTER images acquired on January and March. Then the result of spectral unmxing of them evauateted. The spectral signatures of endmembers could be applied to different seasonal images. When it applied to an ASTER image which have similar zenith angle to the image of the spectral signatures of endmembers, spectral unmixing result was reliable. Although test data has different zenith angle from the image of spectral signatures of endmembers, the spectral unmixing results of urban and vegetation were reliable.

  • PDF

Multiview-based Spectral Weighted and Low-Rank for Row-sparsity Hyperspectral Unmixing

  • Zhang, Shuaiyang;Hua, Wenshen;Liu, Jie;Li, Gang;Wang, Qianghui
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.431-443
    • /
    • 2021
  • Sparse unmixing has been proven to be an effective method for hyperspectral unmixing. Hyperspectral images contain rich spectral and spatial information. The means to make full use of spectral information, spatial information, and enhanced sparsity constraints are the main research directions to improve the accuracy of sparse unmixing. However, many algorithms only focus on one or two of these factors, because it is difficult to construct an unmixing model that considers all three factors. To address this issue, a novel algorithm called multiview-based spectral weighted and low-rank row-sparsity unmixing is proposed. A multiview data set is generated through spectral partitioning, and then spectral weighting is imposed on it to exploit the abundant spectral information. The row-sparsity approach, which controls the sparsity by the l2,0 norm, outperforms the single-sparsity approach in many scenarios. Many algorithms use convex relaxation methods to solve the l2,0 norm to avoid the NP-hard problem, but this will reduce sparsity and unmixing accuracy. In this paper, a row-hard-threshold function is introduced to solve the l2,0 norm directly, which guarantees the sparsity of the results. The high spatial correlation of hyperspectral images is associated with low column rank; therefore, the low-rank constraint is adopted to utilize spatial information. Experiments with simulated and real data prove that the proposed algorithm can obtain better unmixing results.

Linear Spectral Unmixing 기법을 이용한 하이퍼스펙트럴 영상의 Sub-Pixel Detection에 관한 연구 (A Study of Sub-Pixel Detection for Hyperspectral Image Using Linear Spectral Unmixing Algorithm)

  • 김대성;조영욱;한동엽;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.161-166
    • /
    • 2003
  • Hyperspectral imagery have high spectral resolution and provide the potential for more accurate and detailed information extraction than any other type of remotely sensed data. In this paper, the "Linear Spectral Unmixing" model which is one solution to overcome the limit of spatial resolution for remote sensing data was introduced and we applied the algorithm to hyperspectral image. The result was not good because of some problems such as image calibration and used endmembers. Therefore, we analyzed the cause and had a search for a solution.

  • PDF

Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법 (Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image)

  • 최재완;김용일;유기윤
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

Detection of Microphytobenthos Using Spectral Unmixing Method in the Saemangeum Tidal Flat, Korea

  • Lee, Y.K.;Won, J.S.;Ryu, J.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.853-855
    • /
    • 2003
  • Microphytobenthos that supply nutrients to the intertidal ecosystem play an important part as a primary producer. If we estimate distribution and density of microphytobenthos, we can possibly calculate a volume of primary product in the tidal flat and its effect to the intertidal ecosystem. To estimate the portion of microphytobenthos, we used a linear spectral unmixing (LSU) method. LSU is a tool for inference the proportions of the pure components (or end-members) in a mixed pixel. The selection of end-members is critical to LSU. The end-members can be selected either from spectral libraries built from field surveys or from a remotely sensed image. We compared the two approaches of end-member selection, and the preliminary results showed end-members from from spectral library are as effective as those from image itself.

  • PDF

IEA(Iterative Error Analysis)와 분광혼합분석기법을 이용한 초분광영상의 변화탐지 (Change Detection Using Spectral Unmixing and IEA(Iterative Error Analysis) for Hyperspectral Images)

  • 송아람;최재완;장안진;김용일
    • 대한원격탐사학회지
    • /
    • 제31권5호
    • /
    • pp.361-370
    • /
    • 2015
  • 초분광영상을 이용한 변화탐지 기법으로는 Chronochrome(CC), Principal Component Analysis(PCA), 분광혼합분석(spectral unmixing) 등이 있다. 특히, 분광혼합분석을 이용한 변화탐지는 변화객체의 위치 정보뿐만 아니라 변화의 속성까지 분석할 수 있다는 점에서 매우 효과적이나, 분광혼합분석을 활용한 초분광영상의 변화탐지 연구는 여전히 초기단계에 머물러 있다. 본 연구에서는 분광혼합분석을 이용한 효과적인 변화탐지를 위하여 Iterative Error Analysis(IEA)와 Spectral Angle Mapper(SAM) 등을 활용하여 두 영상에서 변화지역을 설명할 수 있는 동일한 endmember를 결정하였으며, 점유비율의 차영상을 통하여 변화지역을 추출하였다. 제안기법의 적용성을 평가하기 위하여 임의의 변화지역을 포함한 Compact Airborne Spectrographic Imager(CASI) 및 Hyperion 모의영상에 대한 변화탐지를 수행하였다. 실험결과, 제안기법이 기존의 CC, PCA, N-FINDR를 이용한 분광혼합분석보다 효과적으로 변화지역을 추출할 수 있는 것으로 나타났다. 본 연구의 제안기법은 사전정보 없이 자동으로 동일한 endmember를 추출할 수 있는 장점을 갖기 때문에 다양한 피복물질로 구성된 영상의 변화탐지에 효과적으로 활용될 것이다.

2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘 (Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method)

  • 최재완;김대성;이병길;유기윤;김용일
    • 대한원격탐사학회지
    • /
    • 제22권4호
    • /
    • pp.295-304
    • /
    • 2006
  • 영상융합은 "특정 알고리즘의 사용을 통해 두 개 혹은 그 이상의 서로 다른 영상을 조합하여 새로운 영상을 만들어내는 것"을 뜻하며 원격탐사에서는 주로 낮은 공간해상도의 멀티스펙트럴 영상과 높은 공간해상도의 흑백영상을 융합하여 높은 공간해상도의 멀티스펙트럴 영상을 생성하는 것을 의미한다. 일반적으로 하이퍼스펙트럴 영상융합을 위해서는 기존의 멀티스펙트럴 영상융합 기법을 이용한 방법이나 분광혼합기법을 이용한 방법을 사용한다. 전자의 경우에는 분광정보가 손실될 가능성이 높으며, 후자의 경우는, endmember의 정보나 부가적인 데이터가 필요하고 결과 영상의 경우 공간적 정보가 상대적으로 부정확한 문제점을 보인다. 따라서 본 연구에서는 하이퍼스펙트럴 영상의 분광특성을 보존하기 위한 융합방법으로서 2단계 분광혼합기법을 사용한 영상융합 알고리즘을 제안하였으며 이를 실제 Hyperion, ALI 영상에 적용하여 평가하였다. 이를 통해 제안한 알고리즘에 의해서 융합된 결과가 PCA, GS 융합기법에 비해서 높은 공간, 분광 해상도를 유지할 수 있음을 보여주었다.

Detection of Microphytobenthos in the Saemangeum Tidal Flat by Linear Spectral Unmixing Method

  • Lee Yoon-Kyung;Ryu Joo-Hyung;Won Joong-Sun
    • 대한원격탐사학회지
    • /
    • 제21권5호
    • /
    • pp.405-415
    • /
    • 2005
  • It is difficult to classify tidal flat surface that is composed of a mixture of mud, sand, water and microphytobenthos. We used a Linear Spectral Unmixing (LSU) method for effectively classifying the tidal flat surface characteristics within a pixel. This study aims at 1) detecting algal mat using LSU in the Saemangeum tidal flats, 2) determining a suitable end-member selection method in tidal flats, and 3) find out a habitual characteristics of algal mat. Two types of end-member were built; one is a reference end-member derived from field spectrometer measurements and the other image end-member. A field spectrometer was used to measure spectral reflectance, and a spectral library was accomplished by shape difference of spectra, r.m.s. difference of spectra, continuum removal and Mann-Whitney U-test. Reference end-members were extracted from the spectral library. Image end-members were obtained by applying Principle Component Analysis (PCA) to an image. The LSU method was effective to detect microphytobenthos, and successfully classified the intertidal zone into algal mat, sediment, and water body components. The reference end-member was slightly more effective than the image end-member for the classification. Fine grained upper tidal flat is generally considered as a rich habitat for algal mat. We also identified unusual microphytobenthos that inhabited coarse grained lower tidal flats.

무감독 Endmember 추출을 통한 하이퍼스펙트럴 영상의 제약 선형분광혼합분석에 관한 연구 (A Study on Constrained Linear Spectral Unmixing of Hyperspectral Imagery based on Unsupervised Endmember Selection)

  • 최재완;김대성;김용일
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 추계학술대회
    • /
    • pp.35-39
    • /
    • 2005
  • 선형혼합분광분석(LSU, Linear Spectral Unmixing) 모델은 위성 영상의 한 화소 값이 공간 내에 포함된 다양한 지표 대상물의 반사에너지가 혼합된 결과로 나타난다는 가정을 통해 화소이하(Sub-Pixel) 단위의 영상 분석을 수행하는 알고리즘의 한 형태이다. 분석의 결과는 한 화소에 존재하는 순수 대상물(Endmember)의 비율로 나타나며, 최소제곱법을 이용하여 결과를 도출하는 것이 일반적인 방법으로 알려져 있다. 하지만, 최소제곱법을 이용한 선형혼합분광분석모델은 기본적인 가정을 만족시키지 못하며, Endmember를 사용자가 임의로 지정해야 하기 때문에 영상 분석에 많은 어려움이 있다. 이런 단점을 극복하기 위해 무감독으로 추출된 Endmember를 이용한 제약선형분광혼합분석(Constrained Linear Spectral Unmixing) 모델을 본 연구를 통해 제안하고자 한다. 결과를 통해, 무감독 제약선형분광혼합분석 모델은 선형분광혼합분석 모델에 비해 각각의 Endmember에 대하여 제약조건을 만족하는 점유비율(Abundance) 정보를 제공하였으나, 비슷한 Endmember를 중복 추출할 수 있는 가능성도 지니고 있음을 확인할 수 있었다.

  • PDF

Test Application of KOMPSAT-2 to the Detection of Microphytobenthos in Tidal Flats

  • Won Joong-Sun;Lee Yoon-Kyung;Choi Jaewon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.249-252
    • /
    • 2005
  • Microphytobenthos bloom from late January to early March in Korean tidal flats. KOMPSAT-2 will provide multi-spectral images with a spatial resolution of 4 m comparable with IKONOS. Using IKONOS and Landsat data, algal mat detection was tested in the Saemangeum area~ Micro-benthic diatoms are abundant and a major primary product in the tidal flats. A linear spectral unmixing (LSU) method was applied to the test data. LSU was effective to detect algal mat and the classified algal mat fraction well correlated with NDVI image. Fine grained upper tidal flats are generally known to be the best environment for algal mat. Algal mat thriving in coarse grained lower tidal flats as well as upper tidal flats were reported in this study. A high resolution multi-spectral sensor in KOMPSAT-2 will provide useful data for long-term monitoring of microphytobenthos in tidal flats.

  • PDF