• Title/Summary/Keyword: Spectral Solar Radiation

Search Result 46, Processing Time 0.023 seconds

STUDY ON THERMAL MODELING METHODS OF A CYLINDRICAL GROUND OBJECT CONSIDERING THE SPECTRAL SOLAR RADIATION THROUGH THE ATMOSPHERE

  • Choi Jun-Hyuk;Choi Mi-Na;Gil Tae-Jun;Kim Tae-Kuk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.205-208
    • /
    • 2005
  • This research is aimed at the development of a software that predicts the surface temperature profiles of three-dimensional objects on the ground considering the spectral solar radiation through the atmosphere. The thermal modelling is essential for identifying the objects on the scenes obtained from the satellites. And the temperature distribution on the objects is necessary to obtain their infrared images in contrast to the background. We developed a software that could be used to model the thermal problems of the ground objects irradiated by the spectral solar radiation. This software can be used to handle the conduction within the object as a one-dimensional mode into the depth or as a three-dimensional mode through the media. LOWTRAN7 is used to model the spectral solar radiation including the direct and diffuse solar radiances. In this paper, temperature distributions on the objects obtained by using the one-dimensional and the three-dimensional thermal models are compared with each other to examine the applicability of the relatively easy-to-apply one-dimensional model.

  • PDF

Study on Modeling the Spectral Solar Radiation Absorption Characteristics in Determining the surface Temperature of a Ground Object (지상물체의 표면온도 계산을 위한 파장별 태양복사 흡수특성 모델링 연구)

  • Choi, Jun-Hyuk;Gil, Tae-Jun;Kim, Tae-Kuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • This paper is aimed at the development of a software that predicts the surface temperature profiles of three-dimensional objects on the ground by considering the spectral solar radiation through the atmosphere. The spectral solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code which analyzes the detailed spectral transmission characteristics by considering the atmospheric gas layers. In this paper, the transient temperature distribution over a cylinder is calculated by using the semi-implicit method. The spectral radiative surface properties such as the absorptivity and emissivity of the objects are used to model the effects of the solar irradiation and the surface emission. Both the detailed spectral modeling and the simple total modeling for the solar radiation absorption show fairly good agreement with each other by showing less than 3% difference in surface temperature.

Revaluation of Solar Radiation Resources in Korea (국내 태양에너지 자원의 재평가)

  • Jo, Dok-Ki;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.153-156
    • /
    • 2006
  • The domestic solar radial ion data have been measured at 16 different sites all over the country since the beginning of 1980. It is very important that the fundamental data for the estimation and assessment of local solar radiation can be secured this project. In order to estimate available energy resource from solar radiation, it is necessary to have enough data, more than 30 years In any country. However since we have collected solar radiation(global radial ion including direct normal radiation) data only for 10 years we still need to measure insolation to secure the reliability and standardization of measured local solar radial ion data. In brief, the major activities on this R&D include rout me maintenance of the national network for insolation data measurement, evaluation of the collected data, and reliability enhancement for assessing the quality of solar radiation data as well.

  • PDF

SPATIO-SPECTRAL MAXIMUM ENTROPY METHOD: II. SOLAR MICROWAVE IMAGING SPECTROSCOPY

  • Bong, Su-Chan;Lee, Jeong-Woo;Gary Dale E.;Yun Hong-Sik;Chae Jong-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.445-462
    • /
    • 2005
  • In a companion paper, we have presented so-called Spatio-Spectral Maximum Entropy Method (SSMEM) particularly designed for Fourier-Transform imaging over a wide spectral range. The SSMEM allows simultaneous acquisition of both spectral and spatial information and we consider it most suitable for imaging spectroscopy of solar microwave emission. In this paper, we run the SSMEM for a realistic model of solar microwave radiation and a model array resembling the Owens Valley Solar Array in order to identify and resolve possible issues in the application of the SSMEM to solar microwave imaging spectroscopy. We mainly concern ourselves with issues as to how the frequency dependent noise in the data and frequency-dependent variations of source size and background flux will affect the result of imaging spectroscopy under the SSMEM. We also test the capability of the SSMEM against other conventional techniques, CLEAN and MEM.

An Experimental Study on the Scale Correction of Measured Horizontal Global Solar Radiation (수평면 전일사량 측정데이터 보정에 관한 실험적 연구)

  • Song, Su-Won
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.25-31
    • /
    • 2010
  • A Precision Spectral Pyranometer (PSP) is mainly used as a reference to calibrate other pyranometers due to its high accuracy and sensitivity in response to the spectrum wavelength range of 0.285 ${\mu}$ to 2.8 ${\mu}$, while the sensitivity of photovoltaic-type Li-Cor pyranometer is limited within a certain spectral range from 0.4 ${\mu}$ to 1.1 ${\mu}$. In this study, two Eppley PSPs($PSP_1$ and $PSP_2$) were first compared to the calibrated Eppley PSPs from National Renewable Energy Laboratory (NREL), resulting in two linear correction factors based on the comparison between the logger output (V) from the test PSP and the solar radiation (W/m2) from the NREL PSP. The Li-Cor pyranometer used in this study was then corrected based on the comparison of measured solar radiation ($W/m^2$) from the corrected $PSP_1$ and the Li-Cor pyranometer. In addition, instrument scale corrections were also performed for the PSPs and the Li-Cor from the transmitter to the data logger. From the comparisons, a linear correction factor (1.0214) with R=0.9998 was developed for the scale correction between$PSP_1$ and $PSP_2$, while the Li-Cor pyranometer has a scale(1.0597) and offset (32.046) with R=0.9998 against$PSP_1$. As a result, it was identified that there were good agreements within ${\pm}$ 10 W/ $m^2$ between Eppley $PSP_1$ vs. $PSP_2$ solar radiation and within ${\pm}$ 20 W/$m^2$ between$PSP_1$ vs Li-Cor solar radiation after the empirical scale corrections developed in this study.

Analysis of Solar Microwave Burst Spectrum, I. Nonuniform Magnetic Field

  • Lee, Jeongwoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Solar microwave bursts carry information about the magnetic field in the emitting region as well as about electrons accelerated during solar flares. While this sensitivity to the coronal magnetic field must be a unique advantage of solar microwave burst observations, it also adds a complexity to spectral analysis targeted to electron diagnostics. This paper introduces a new spectral analysis procedure in which the cross-section and thickness of a microwave source are expressed as power-law functions of the magnetic field so that the degree of magnetic inhomogeneity can systematically be derived. We applied this spectral analysis tool to two contrasting events observed by the Owens Valley Solar Array: the SOL2003-04-04T20:55 flare with a steep microwave spectrum and the SOL2003-10-19T16:50 flare with a broader spectrum. Our analysis shows that the strong flare with the broader microwave spectrum occurred in a region of highly inhomogeneous magnetic field and vice versa. We further demonstrate that such source properties are consistent with the magnetic field observations from the Michelson Doppler Imager instrument onboard the Solar and Heliospheric Observatory (SOHO) spacecraft and the extreme ultraviolet imaging observations from the SOHO extreme ultraviolet imaging telescope. This spectral inversion tool is particularly useful for analyzing microwave flux spectra of strong flares from magnetically complex systems.

SOLAR ACTIVE REGION STUDY USING MICROWAVE MAPS

  • BONG SU-CRAN;LEE JEONGWOO;GARY DALE E.;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.29-36
    • /
    • 2003
  • Quiescent solar radiation, at microwave spectral regime, is dominated by gyroresonant and thermal Bremsstrahlung radiations from hot electrons residing in solar active region corona. These radiations are known to provide excellent diagnostics on the coronal temperature, density, and magnetic field, provided that spatially resolved spectra are available from observations. In this paper we present an imaging spectroscopy implemented for a bipolar active region, AR 7912, using the multifrequency interferometric data from the Owens Valley Solar Array (OVSA), as processed with a new imaging technique, so-called Spatio-Spectral Maximum Entropy Method (SSMEM). From the microwave maps at 26 frequencies in the range of 1.2-12.4 GHz at both right- and left-circular polarizations, we construct spatially resolved brightness spectra in every reconstructed pixel of about 2 arcsec interval. These spectra allowed us to determine 2-D distribution of electron temperature, magnetic field of coronal base, and emission measure at the coronal base above the active region. We briefly compare the present result with existing studies of the coronal active regions.

Temperature Correction of Solar Radiation on Clear Sky Using by Modified Pyranometer (특수일사계를 이용한 맑은 날 일사량의 온도 보정)

  • Zo, Il-Sung;Jeong, Myeong-Jae;Lee, Kyu-Tae;Jee, Joon-Bum;Kim, Bu-Yo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.9-19
    • /
    • 2015
  • Pyranometer have many uncertainty factors (sensitivity function, thermal offset, other spectral effect, geometric, environment, and equipment etc.) than pyrheliometer. The solution for most of the uncertainty factors have been researched, but the problem for thermal offset is being continued research so far. Under the clear sky, due to the thermal offset of pyranometer, the diffuse and global radiation have been negative value for the nighttime and lower value for the daytime, respectively. In order to understand the uncertainty of the thermal offset effect, solar radiation are observed and analyzed using Ji and Tsay method and data from modified pyranometer. As a result of performing temperature correction using the modified pyranometer, the slope (dome factor; k) and intercept ($r_0$) from a linear regression method are 0.064 and $3.457g{\cdot}m^{-2}{\cdot}k^{-1}$, respectively. And the solar radiation is decreased significantly due to the effect of thermal offset during nighttime. The solar radiation from modified pyranometer increased approximately 8% higher than its observed by general pyranometer during daytime. By the way, these results did not generalize because its result is for only single case in clear sky. Accordingly, it is to required for accurate results obtained by the various cases (clear, cloudy and rainy) with longterm observations.

A Theoretical and Experimental Study for the Design of Solar Air Heaters Using Porous Material (다공성 물질을 이용한 공기용 태양열 집열기의 설계를 위한 이론 및 실험적 연구)

  • Hwang, Yong-Ha;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.336-345
    • /
    • 1996
  • A theoretical and experimental study was conducted in order to design highly efficient solar air heaters using porous material. Radiative characteristics of glass windows and porous absorbing media were correlated through spectral transmittances measured by the UV-Visible and the FT-IR spectrometers. Using those characteristics the efficiencies of collectors were numerically calculated with the use of the two-flux radiation model. Based on the theoretical results, an experimental solar collector was designed and constructed. Experimental results under various conditions show that the daily efficiencies are over 60% in general and agree well with the theoretically calculated ones.

A Study on Prediction of Surface Temperature and Reduction of Infrared Emission from a Naval Ship by Considering Emissivity of Funnel in the Mid-Latitude Meterological Conditions (중위도 기상조건에서 함정의 연돌 방사율을 고려한 적외선 복사량 예측 및 감소방안 연구)

  • Gil, Tae-Jun;Choi, Jun-Hyuk;Cho, Yong-Jin;Kim, Tae-Kuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.40-47
    • /
    • 2007
  • This study is focused on developing a software that predicts the temperature distribution and infrared Emission from 30 objects considering the solar radiation through the atmosphere. The solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code. Surface temperature information is essential for generating the infrared scene of the object. Predictions of the transient surface temperature and the infrared emission from a naval ship by using the software developed here show fairly good results by representing the typical temperature and emitted radiance distributions expected for the naval ship considered in mid latitude. Emissivity of each material is appeared to be an important parameter for recognizing the target in Infrared band region. The numerical results also show that the low emissivity surface on the heat source can be helpful in reducing the IR image contrast as compared to the background sea.