• Title/Summary/Keyword: Spectral Density Function

Search Result 221, Processing Time 0.029 seconds

Stability of SA Fragility Curves on Elastic Modulus (탄성계수에 대한 SA 손상도 곡선의 안정성)

  • Lee, Jong-Heon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2006
  • In this paper, the stability of SA(Spectral Acceleration) fragility curves is studied for the two sets of elastic modulus of concrete. In doing that, general purpose structural analysis program and generally used probability density function are used. The results of structural analysis are represented by Bernoulli distribution which says damage or no damage. By the use of Maximum Likelihood Method, two parameters of lognormal distribution - median and standard deviation - are found. With them, the fragility curves are constructed.

  • PDF

Stochastic interpolation of earthquake ground motions under spectral uncertainties

  • Morikawa, Hitoshi;Kameda, Hiroyuki
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.839-851
    • /
    • 1997
  • Closed-form solutions are analytically derived for stochastic properties of earthquake ground motion fields, which are conditioned by an observed time series at certain observation sites and are characterized by spectra with uncertainties. The theoretical framework presented here can estimate not only the expectations of such simulated earthquake ground motions, but also the prediction errors which offer important information for the field of engineering. Before these derivations are made, the theory of conditional random fields is summarized for convenience in this study. Furthermore, a method for stochastic interpolation of power spectra is explained.

Cost-Effectiveness Evaluation of the Structure with Viscoelastic Dampers (점탄성감쇠기를 설치한 구조물의 비용효율성 평가)

  • 고현무;함대기;조상열
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.387-393
    • /
    • 2001
  • Installing vibration control devices in the structure rises as a solution instead of increasing structural strength considering construction cost. Especially, viscoelastic dampers show excellent vibration control performance at low cost and are easy to install in existing structures compared with other control devices. Therefore, cost-effectiveness of structure with viscoelastic dampers needs to be evaluated. Previous cost-effectiveness evaluation method for the seismically isolated structure(Koh et al., 1999;2000)is applied on the building structure with viscoelastic dampers, which combines optimal design and cost-effectiveness evaluation for seismically isolated structures based on minimum life-cycle cost concept. Input ground motion is modeled in the form of spectral density function to take into account acceleration and site coefficients. Damping of the viscoelastic damper is considered by modal strain energy method. Stiffness of shear building and shear area of viscoelastic damper are adopted as design variables for optimization. For the estimation of failure probability, transfer function of the structure with viscoelastic damper for spectral analysis is derived from the equation of motion. Results reveal that cost-effectiveness of the structure with viscoelastic dampers is relatively high in how seismic region and stiff soil condition.

  • PDF

The Power Spectral Density Characteristics of Lift and Drag Fluctuation of Fin Tube in a Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력과 항력 변동에 따른 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.23-29
    • /
    • 2016
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift and drag fluctuation over the fin tube was investigated. The derived nondimensional lift PSD was compared with the results of the previous experimental studies and the characteristics of lift and drag PSD over a single fin tube was established from the present CFD study.

A Study on the Characteristics of Lift and Drag Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력과 항력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.712-718
    • /
    • 2016
  • A heat exchanger tube array in a heat recovery steam generator is exposed to hot exhaust gas flow that can cause flow induced vibrations, which could damage the heat exchanger tube array. The characteristics of flow induced vibration in the tube array need to be established for the structural safe operation of a heat exchanger. Several studies of the flow induced vibrations of typical heat exchangers have been conducted and the nondimensional PSD (Power Spectral Density) function with the Strouhal number, fD/U, had been derived using an experimental method. The present study examined the results of the previous experimental research on the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array was determined from the present CFD analysis. The present CFD analysis introduced circular cylinder tube array and calculated using unsteady laminar flow for the tube array. The characteristics of lift and drag fluctuations over the cylinder tube array was investigated. The derived nondimensional lift and drag PSD was compared with the results of the previous experimental research and the characteristics of lift and drag PSD for a circular cylinder tube array was established from the present CFD study.

A Study on the Characteristics of Lift Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6641-6646
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed to establish the characteristics of flow induced vibration in the tube array for the structural safe operation of the heat exchanger. Several researches for the flow induced vibration of typical heat exchangers had been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced circular cylinder tube array and calculated with the unsteady laminar flow for the tube array. The characteristics of lift fluctuation over the cylinder tube array was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD for circular cylinder tube array was established from the present CFD study.

A Study on the Characteristics of Lift Fluctuation Power Spectral Density on a Fin Tube in the Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력 변동 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift fluctuation over the fin tube was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single fin tube was established from the present CFD study.

The Power Spectral Density Characteristics of Lift and Drag Fluctuation on a Heat Exchanger Circular Tube (열교환 단일 원관의 양력과 항력 변동에 따른 PSD 특성 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced a single circular cylinder and calculated with the unsteady laminar flow over the cylinder. The characteristics of vortex shedding and lift and drag fluctuation over the cylinder was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift and drag PSD over a single circular cylinder was established from the present CFD study.

Wind-induced Vibration of Building Structures with Viscoelastic Dampers (점성감쇠기가 설치된 건물의 내풍해석)

  • 주석준;민경원;홍성목
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.130-135
    • /
    • 1995
  • Wind-induced vibration of buildings with viscoelastic dampers are studied analytically. The added viscoelastic dampers change the damping distribution and reduce the response of buildings. The distribution of damping resistance that results from these viscoelastic dampers is known as non-classical or non-proportional. Non-classically damped structures are analyzed by state-space approach. However, this approach is complex and time-consumming compared to classical approach. This paper is aimed at the analysis of wind-induced Vibration Of buildings With Viscoelastic dampers. The Process Of State-Space approach is studied and the approximate analysis is suggested to overcome the complex and time-consuming access. For numerical certification, PSDF(Power Spectral Density Function) is obtained. Autocorrelation function is obtained in time domain and PSDF is obtained by fourier transformation of this function in frequency domain. It is found that Approximate method can give close approximation to exact solution.

  • PDF

Generation of Artificial Earthquake Ground Motions considering Design Response Spectrum (설계응답스펙트럼을 고려한 인공지진파의 발생에 관한 연구)

  • 정재경;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.145-150
    • /
    • 1999
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This paper shows the process to generate nonstationary artificial earthquake ground motions considering target design response spectrum chosen by ATC14.

  • PDF