• Title/Summary/Keyword: Spectral Density Function

Search Result 221, Processing Time 0.03 seconds

Size-dependent damped vibration and buckling analyses of bidirectional functionally graded solid circular nano-plate with arbitrary thickness variation

  • Heydari, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.171-182
    • /
    • 2018
  • For the first time, nonlocal damped vibration and buckling analyses of arbitrary tapered bidirectional functionally graded solid circular nano-plate (BDFGSCNP) are presented by employing modified spectral Ritz method. The energy method based on Love-Kirchhoff plate theory assumptions is applied to derive neutral equilibrium equation. The Eringen's nonlocal continuum theory is taken into account to capture small-scale effects. The characteristic equations and corresponding first mode shapes are calculated by using a novel modified basis in spectral Ritz method. The modified basis is in terms of orthogonal shifted Chebyshev polynomials of the first kind to avoid employing adhesive functions in the spectral Ritz method. The fast convergence and compatibility with various conditions are advantages of the modified spectral Ritz method. A more accurate multivariable function is used to model two-directional variations of elasticity modulus and mass density. The effects of nanoscale, in-plane pre-load, distributed dashpot, arbitrary tapering, pinned and clamped boundary conditions on natural frequencies and buckling loads are investigated. Observing an excellent agreement between results of current work and outcomes of previously published works in literature, indicates the results' accuracy in current work.

Height Dependence of Plasma Properties in a Solar Limb Active Region Observed by Hinode/EIS

  • Lee, Kyoung-Sun;Imada, S.;Moon, Y.J.;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.110.2-110.2
    • /
    • 2012
  • We investigate a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer (EIS). The cool loop is clearly seen in the EIS spectral lines formed at the transition region temperature (log T = 5.8). The dark lane is characterized by an elongated faint structure in coronal spectral lines (log T = 5.8 - 6.1) and rooted on a bright point. We examine their electron densities, Doppler velocities, and non-thermal velocities as a function of distance from the limb using the spectral lines formed at different temperatures (log T = 5.4 - 6.4). The electron densities of the cool loop and the dark lane are derived from the density sensitive line pairs of Mg VII, Fe XII, and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Mg VII (log T = 5.8) and the scale height temperature of the dark lane is close to a peak formation temperature of the Fe XII and Fe XIII (log T = 6.1 - 6.2). It is interesting to note that the structures of the cool loop and the dark lane are most visible in these temperature lines. While the non-thermal velocity in the cool loop slightly decreases (less than 7 km $s^{-1}$) along the loop, that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the fast solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  • PDF

Prediction of Performance Loss Due to Phase Noise in Digital Satellite Communication System (디지털 위성통신시스템에서 위상 잡음으로 인한 성능 손실 예측)

  • 김영완;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.679-686
    • /
    • 2002
  • Based on the alternating series expansion of error probability function due to phase noise in PSK systems, the performance evaluations for Tikhonov and Gaussian probability density functions were performed in this paper. The range of the signal-to-noise ratio of recovered carrier signal which provides the same dependency between the error performances by Tikhonov function and Gaussian function was analyzed via loss evaluation due to phase noise. The phase noise with 1/f$^2$ characteristic was generated based on the relationship of the phase noise spectral density and the modulation index for frequency modulation signal. Using the generated phase noise as the input signal for digital satellite communication receiver, the performance losses due to the phase noise were measured and evaluated with the analyzed performance characteristics.

Response of a frame structure on a canyon site to spatially varying ground motions

  • Bi, Kaiming;Hao, Hong;Ren, Weixin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.111-127
    • /
    • 2010
  • This paper studies the effects of spatially varying ground motions on the responses of a bridge frame located on a canyon site. Compared to the spatial ground motions on a uniform flat site, which is the usual assumptions in the analysis of spatial ground motion variation effects on structures, the spatial ground motions at different locations on surface of a canyon site have different intensities owing to local site amplifications, besides the loss of coherency and phase difference. In the proposed approach, the spatial ground motions are modelled in two steps. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function and an empirical spatial ground motion coherency loss function. Then, power spectral density function of ground motion on surface of the canyon site is derived by considering the site amplification effect based on the one dimensional seismic wave propagation theory. Dynamic, quasi-static and total responses of the model structure to various cases of spatially varying ground motions are estimated. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effects, to spatial ground motions without considering coherency loss or phase shift are also calculated. Discussions on the ground motion spatial variation and local soil site amplification effects on structural responses are made. In particular, the effects of neglecting the site amplifications in the analysis as adopted in most studies of spatial ground motion effect on structural responses are highlighted.

Electronic States of Uranium Dioxide

  • Younsuk Yun;Park, Kwangheon;Hunhwa Lim;Song, Kun-Woo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.202-210
    • /
    • 2002
  • The details of the electronic structure of the perfect crystal provides a critically important foundation for understanding the various defect states in uranium dioxide. In order to understand the local defect and impurity mechanism, the calculation of electronic structure of UO$_2$ in the one-electron approximation was carried out, using a semi-empirical tight-binding formalism(LCAO) with and without f-orbitals. The energy band, local and total density of states for both spin states are calculated from the spectral representation of Green’s function. The bonding mechanism in Perfect lattice of UO$_2$ is discussed based upon the calculations of band structure, local and total density of states.

Truncation Parameter Selection in Binary Choice Models (이항 선택 모형에서의 절단 모수 선택)

  • Kim, Kwang-Rae;Cho, Kyu-Dong;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.811-827
    • /
    • 2010
  • This paper deals with a density estimation method in binary choice models that can be regarded as a statistical inverse problem. We use an orthogonal basis to estimate density function and consider the choice of an appropriate truncation parameter to reflect the model complexity and the prediction accuracy. We propose a data-dependent rule to choose the truncation parameter in the context of binary choice models. A numerical simulation is provided to illustrate the performance of the proposed method.

Fatigue Damage Combination for Spread Mooring System under Stationary Random Process with Bimodal Spectrum Characteristics (바이모달 스펙트럼 특성을 가지는 정상확률과정에 대한 다점계류라인의 피로손상도 조합기법 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.813-820
    • /
    • 2010
  • The spread mooring system for FPSO is developed to explore deep sea area, in which swell is dominant. It is known that the tension response of mooring lines in this sea area shows bimodal spectrum. Assuming normal distribution of tension profile and Rayleigh distribution of tension amplitude, the power spectral density function (PSD) of the mooring tension under the bimodal stationary random process is applied for the calculation of spectrum fatigue. Three popular methods, which are simple summation method, combined spectrum method and Jioa-Moan method, are used to combine fatigue damages from bimodal spectrum characteristics. Each damage value is compared with damage using Rainflow Cycle Counting (RCC) method which is believed to be close to exact solution. Vanmarcke' parameter and RMS(Root Mean Square) ratio are employed to assess relative damage variations between from RCC method and from three combination methods. Finally the most reliable fatigue damage combining method for spread mooring system is suggested.

Running Monitoring by the Noise and Vibration Measurement near the Wheelset of the High-Speed Trains : A Preliminary Research (고속철도차량 윤축부근의 소음과 진동 측정을 통한 주행중 감시의 기초연구)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1454-1462
    • /
    • 2008
  • This paper is focused on the analysis of the noise and vibration measured near the wheelset of the high-speed trains using a time-varying frequency transform as a preliminary research of running monitoring. Due to the non-stationary characteristics, it is necessary to examine noise and vibration of the train with time-varying frequency transforms. In this paper, the short-time Fourier transform method is utilized - the stored data is localized by modulating with a window function, and Fourier transform is taken to each localized data. For the examination, the non-stationary noise and vibration of the high-speed train's wheelset are measured by using some microphones and accelerometers, and those signals are stored in a on-board data acquisition system. The non-stationary random signal analyses with the short-time Fourier transform are performed, and the result are classified as follows; auto-spectral density, cross-spectral density, frequency response, and coherence functions. From those functions, it is possible to observe the frequency characteristics of sleepers, switchers, tunnels, and steel bridges. Also, some distinct peaks, which are not dependent upon the train's speed, are identified from the results.

  • PDF

Vibration Analysis of Composite Satellite Antenna by Acoustic Excitation (음향 가진에 의한 위성 안테나의 진동해석)

  • ;;;;;Horst Stockburger
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.123-126
    • /
    • 2002
  • Acoustic vibration analysis has been performed using random vibration analysis module of MSC/NASTRAN to evaluate the safety of the composite satellite antenna structure under the acoustic pressure from the launch vehicle. It was found that maximum $3\sigma$ stress by acoustic excitation was less than allowable stress.

  • PDF

Predictive Control of Structural Vibration Subject to Wind Loads (풍하중에 대한 구조진동의 예측제어)

  • 최창근;권대건;이은진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.29-36
    • /
    • 1996
  • A procedure for the predictive control for structural vibration control in building subject to wind loads is presented. The building motions are modeled by the first mode of the response. Wind velocities are generated by the simulation using power spectral density function. Predictive control algorithm is the discrete-time formulation and that is developed as a control strategy that computes the control signal which makes the predicted process output equal to a desired process output. Results on the reduction of the dynamic response and control effectiveness of the algorithm are presented and discussed.

  • PDF