• Title/Summary/Keyword: Spectral Angle Classification

Search Result 34, Processing Time 0.038 seconds

A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification (반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구)

  • Jo Hyun-Gee;Kim Dae-Sung;Yu Ki-Yun;Kim Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.111-121
    • /
    • 2006
  • The classification using spectral angle is a new approach based on the fact that the spectra of the same type of surface objects in RS data are approximately linearly scaled variations of one another due to atmospheric and topographic effects. There are many researches on the unsupervised classification using spectral angle recently. Nevertheless, there are only a few which consider the characteristics of Hyperspectral data. On this study, we propose the ISOMUSAC(Iterative Self-Organizing Modified Unsupervised Spectral Angle Classification) which can supplement the defects of previous unsupervised spectral angle classification. ISOMUSAC uses the Angle Division for the selection of seed points and calculates the center of clusters using spectral angle. In addition, ISOMUSAC perform the iterative merging and splitting clusters. As a result, the proposed algorithm can reduce the time of processing and generate better classification result than previous unsupervised classification algorithms by visual and quantitative analysis. For the comparison with previous unsupervised spectral angle classification by quantitative analysis, we propose Validity Index using spectral angle.

THE MODIFIED UNSUPERVISED SPECTRAL ANGLE CLASSIFICATION (MUSAC) OF HYPERION, HYPERION-FLASSH AND ETM+ DATA USING UNIT VECTOR

  • Kim, Dae-Sung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.134-137
    • /
    • 2005
  • Unsupervised spectral angle classification (USAC) is the algorithm that can extract ground object information with the minimum 'Spectral Angle' operation on behalf of 'Spectral Euclidian Distance' in the clustering process. In this study, our algorithm uses the unit vector instead of the spectral distance to compute the mean of cluster in the unsupervised classification. The proposed algorithm (MUSAC) is applied to the Hyperion and ETM+ data and the results are compared with K-Meails and former USAC algorithm (FUSAC). USAC is capable of clearly classifying water and dark forest area and produces more accurate results than K-Means. Atmospheric correction for more accurate results was adapted on the Hyperion data (Hyperion-FLAASH) but the results did not have any effect on the accuracy. Thus we anticipate that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but also hyperspectral images. Furthermore the cluster unit vector can be an efficient technique for determination of each cluster mean in the USAC.

  • PDF

A Comparison of Classification Techniques in Hyperspectral Image (하이퍼스펙트럴 영상의 분류 기법 비교)

  • 가칠오;김대성;변영기;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.251-256
    • /
    • 2004
  • The image classification is one of the most important studies in the remote sensing. In general, the MLC(Maximum Likelihood Classification) classification that in consideration of distribution of training information is the most effective way but it produces a bad result when we apply it to actual hyperspectral image with the same classification technique. The purpose of this research is to reveal that which one is the most effective and suitable way of the classification algorithms iii the hyperspectral image classification. To confirm this matter, we apply the MLC classification algorithm which has distribution information and SAM(Spectral Angle Mapper), SFF(Spectral Feature Fitting) algorithm which use average information of the training class to both multispectral image and hyperspectral image. I conclude this result through quantitative and visual analysis using confusion matrix could confirm that SAM and SFF algorithm using of spectral pattern in vector domain is more effective way in the hyperspectral image classification than MLC which considered distribution.

  • PDF

Atmospheric Correction Effectiveness Analysis and Land Cover Classification Using Airborne Hyperspectral Imagery (항공 하이퍼스펙트럴 영상의 대기보정 효과 분석 및 토지피복 분류)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Joo, Young-Don
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.31-41
    • /
    • 2016
  • Atmospheric correction as a preprocessing work should be performed to conduct accurately landcover/landuse classification using hyperspectral imagery. Atmospheric correction on airborne hyperspectral images was conducted and then the effect of atmospheric correction by comparing spectral reflectance characteristics before and after atmospheric correction for a few landuse classes was analyzed. In addition, land cover classification was first conducted respectively by the maximum likelihood method and the spectral angle mapper method after atmospheric correction and then the results were compared. Applying the spectral angle mapper method, the sea water area were able to be classified with the minimum of noise at the threshold angle of 4 arc degree. It is considered that object-based classification method, which take into account of scale, spectral information, shape, texture and so forth comprehensively, is more advantageous than pixel-based classification methods in conducting landcover classification of the coastal area with hyperspectral images in which even the same object represents various spectral characteristics.

A CLASSIFICATION METHOD BASED ON MIXED PIXEL ANALYSIS FOR CHANGE DETECTION

  • Jeong, Jong-Hyeok;Takeshi, Miyata;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.820-824
    • /
    • 2003
  • One of the most important research areas on remote sensing is spectral unmixing of hyper-spectral data. For spectral unmixing of hyper spectral data, accurate land cover information is necessary. But obtaining accurate land cover information is difficult process. Obtaining land cover information from high-resolution data may be a useful solution. In this study spectral signature of endmembers on ASTER acquired in October was calculated from land cover information on IKONOS acquired in September. Then the spectral signature of endmembers applied to ASTER images acquired on January and March. Then the result of spectral unmxing of them evauateted. The spectral signatures of endmembers could be applied to different seasonal images. When it applied to an ASTER image which have similar zenith angle to the image of the spectral signatures of endmembers, spectral unmixing result was reliable. Although test data has different zenith angle from the image of spectral signatures of endmembers, the spectral unmixing results of urban and vegetation were reliable.

  • PDF

A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification (반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구)

  • Jo, Hyun-Gee;Kim, Dae-Sung;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.41-45
    • /
    • 2005
  • 분광각(Spectral Angle)을 이용한 분류는 같은 종류의 지표 대상물의 분광 특성이 대기 및 지형적인 영향으로 인해 원점을 기준으로 선형적인 분포 모양을 가진다는 가정에 기초한 새로운 접근의 분류 방식이다. 최근 분광각을 이용한 무감독 분류에 대한 연구가 활발히 이루어지고 있으나, 원격탐사 데이터의 특성을 반영한 효과적인 무감독 분류에 대한 연구는 미진한 상태이다. 본 연구는 하이퍼스펙트럴 영상 분류에 있어서 기존 무감독 분광각 분류(USAC, Unsupervised Spectral Angle Classification) 연구에서 해결하지 못한 문제점들을 보완한 반복최적화 무감독 분광각 분류(ISOUSAC, Iterative Self-Organizing USAC) 기법을 제안하고 있다. 이를 위해, 무감독 분광각 분류에 적합한 각 분할(Angle Range Division) 기법을 적용하여 군집 초기 중심을 설정하였으며, 병합(Merge)과 분할(Split)를 통한 유동적인 군집 분석을 수행하였다. 결과를 통해, 제안된 알고리즘이 기존의 기법보다 수행 시간뿐 아니라 시각적인 면에서도 우수한 결과를 도출함을 확인할 수 있었다.

  • PDF

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF

The Study on Improving Accuracy of Land Cover Classification using Spectral Library of Hyperspectral Image (초분광영상의 분광라이브러리를 이용한 토지피복분류의 정확도 향상에 관한 연구)

  • Park, Jung-Seo;Seo, Jin-Jae;Go, Je-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.239-251
    • /
    • 2016
  • Hyperspectral image is widely used for land cover classification because it has a number of narrow bands and allow each pixel to include much more information in comparison with previous multi-spectral image. However, Higher spectral resolution of hyperspectral image results in an increase in data volumes and a decrease in noise efficiency. SAM(Spectral Angle Mapping), a method based on vector inner product to compare spectrum distribution, is a highly valuable and popular way to analyze continuous spectrum of hyperspectral image. SAM is shown to be less accurate when it is used to analyze hyperspectral image for land cover classification using spectral library. this inaccuracy is due to the effects of atmosphere. We suggest a decision tree based method to compensate the defect and show that the method improved accuracy of land cover classification.

The Hyperspectral Image Classification with the Unsupervised SAM (무감독 SAM 기법을 이용한 하이퍼스펙트럴 영상 분류)

  • 김대성;김진곤;변영기;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.159-164
    • /
    • 2004
  • SAM(Spectral Angle Mapper) is the method using the similarly of the angle between pairs of signatures instead of the spectral distance(MDC, MLC etc.) for classification or clustering. In this paper, we applied unsupervised techniques(Unsupervised SAM and ISODATA) to the Hyperspectral Image(Hyperion) which has innumerable, narrow and contiguous spectral bands and Multispectral Image(ETM$\^$+/) for the clustering of signatures. The overall measured accuracies of the USAM and ISODATA of multispectral image were 76.52%, 53.91% and the USAM and ISODATA of hyperspectral image were 63.04%, 53.91%. From the results of our test, we report that the Unsupervised SAM is better classfication technique than ISODATA. Also we believe that the "Spectral Angle" can potentially be one of the most accurate classifier not only multispectral images but hyperspectral images.

  • PDF

Support Vector Machine and Spectral Angle Mapper Classifications of High Resolution Hyper Spectral Aerial Image

  • Enkhbaatar, Lkhagva;Jayakumar, S.;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.233-242
    • /
    • 2009
  • This paper presents two different types of supervised classifiers such as support vector machine (SVM) and spectral angle mapper (SAM). The Compact Airborne Spectrographic Imager (CASI) high resolution aerial image was classified with the above two classifier. The image was classified into eight land use /land cover classes. Accuracy assessment and Kappa statistics were estimated for SVM and SAM separately. The overall classification accuracy and Kappa statistics value of the SAM were 69.0% and 0.62 respectively, which were higher than those of SVM (62.5%, 0.54).