• Title/Summary/Keyword: Spectra/vinylester composites

Search Result 4, Processing Time 0.016 seconds

A study on the Surface Treatment of Spectra to Improve Tensile Propetry of Spectra/Vinylester Composites (스펙트라/비닐에스테르 복합재료의 인장특성 향상을 위한 스펙트라 표면처리에 관한 연구)

  • 신동혁;이경엽;박상정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.782-785
    • /
    • 1997
  • In this study, the spectra was surface-treated using $Ar^+$ ion beam to improve the tensile property of spectra/vinylester composites. The effect of surface treatment on the tensile property of spectra/vinylester composites was investigated comparing tensile strength and stiffness of surface-treated spectra/vinylester composites with those of untreated spectra/vinylester composites. The results showed that the tensile strength and stiffness of surface-treated s spectra/vinylester composites were 12% and 22% higher than those of untreated spectra/vinylester composites.

  • PDF

A Study on the Tensile Behavior of Spectra Composite with Surface Treatment of Spectra Fibers (스펙트라 섬유의 표면처리에 따른 스펙트라 복합재의 인장특성에 관한 연구)

  • 신동혁;이경엽
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.192-194
    • /
    • 2002
  • We investigated the surface treatment of spectra fibers to improve tensile properties of spectra/vinylester composites. The spectra fibers were surface-treated using $\textrm{Ar}^{+}$ ion beam under oxygen environment. The treatment effect of spectra fibers on the tensile properties of spectra/vinylester composites was determined comparing the residual strength of surface-treated spectra/vinylester composites with that of untreated spectra/vinylester composites. It was found that the residual strength was improved 15% by the surface treatment of spectra fibers.

  • PDF

A Study on the Tensile Characteristics of Spectra/Vinylester Composites with Ion Beam Treatment of Spectra Fibers. (이온빔으로 표면처리한 스펙트라/비닐에스테르 복합재의 인장특성)

  • 신동혁;이경엽
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.206-210
    • /
    • 2002
  • The use of Spectra fibers as fiber cloth is increasing because of their excellent impact resistance. However, a major limitation on the use of Spectra fibers is a chemical inertness. In this Study, Spectra fibers were surface-treated using Ar$^{+}$ ion beam under oxygen environment to improve the tensile property of Spectra/vinylester composites. The effect of surface treatment of Spectra fibers on the tensile property of Spectra/vinylester composites was determined from tensile tests using Spectra/vinylester composite specimens with and without a hole. It was found that the tensile stiffness and strength of surface-treated case were 22% and 17% higher than those of untreated case for specimens with no hole. The maximum load of surface-treated case was about 15% higher than that of untreated case for specimens with a hole.

A Study on the Surface Treatment of Spectra Fibers Using an ion Assisted Reaction Method (이온도움 반응법을 이용한 스펙트라 섬유의 표면처리에 대한 연구)

  • 이경엽;신동혁;지창헌
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.319-324
    • /
    • 2002
  • It is known that ion-assisted reaction method is effective for the surface modification of polymers. The surface treatment of Spectra fibers using the ion-assisted reaction method was investigated in the present study The Spectra fibers were treated by $Ar^{+}$ / ion irradiation under oxygen environment. The treatment was carried out at different $Ar^{+}$ ion doses. The$ Ar^{+ }$ /ion doses used were $6$\times$10^{15}$ , $1$\times$10^{16}$ , $5$\times$10^{16}$ , $1$\times$10^{17}$ / ions/$\m^2$. Optimal $Ar^{+}$ ion dose in the treatment of Spectra fibers was determined by measuring the tensile strength and modulus of Spectra/vinylester composites as a function of ion dose. It was found that the optimal ion dose was $1$\times$10^{16}$ions/$\m^2$. It was also found from the scanning electron microscope examination that the surface-treatment improved adhesion between fibers and vinylester resin.