• Title/Summary/Keyword: Specifically modified silicate

Search Result 2, Processing Time 0.014 seconds

A Study on the Preparation Method of Geopolymeric Concrete using Specifically Modified Silicate and Inorganic Binding Materials and Its Compressive Strength Characteristics

  • Kim, Jong Young
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.150-153
    • /
    • 2015
  • Recently, research on geopolymeric concrete that does not use cement as a binder has been actively investigated. Geopolymeric concrete is cement-free concrete. Masato, ocher and/or soil has been solidified into geopolymeric concrete by the reaction of specifically modified silicate as an alkali activator and inorganic binding materials such as blast furnace slag, fly ash or meta-kaolin, which is cured at room temperature to exhibit high compressive strengths. Based on the results, this study shows how geopolymeric concrete that uses specifically modified silicate and inorganic binding materials is implemented as eco-cement with no cement.

A study on the manufacture of humidity sensors using layered silicate nanocomposite materials (층상 실리케이트계 나노복합 소재 적용 습도센서 제조에 관한 연구)

  • Park, Byoung-Ki
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • In this study, evaluated the properties of layered silicate-based nanocomposite sensitive film. For the fabrication of nanocomposite materials, we selected organically modified layered silicate materials, specifically Cloisite® and Bentone®, which were treated with quaternary ammonium salts. The impedance of the humidity sensors containing organically modified montmorillonite/hectorite clay decreased with increasing relative humidity(RH%). In the case of the Cloisite® humidity sensor exhibited slightly better impedance linearity and hysteresis compared to the Bentone® 38 humidity sensor. Additionally the impedance of the sensor with Bentone® 38 addition was the lowest when compared to the Cloisite®-modified sensor. Comparing the Cloisite®-modified sensors individually, we observed different moisture absorption characteristics based on the hydrophilic properties of the organic-treated materials. The response speed of Cloisite® 93A tended to be slower due to differences in moisture evaporation rates influenced by the hydrophilic organic components. Based on these results, moisture barriers utilizing organically modified layered silicate materials may exhibit slightly lower moisture absorption properties compared to conventional polymer-based moisture barriers. However, their excellent stability, simple processing, and cost-effectiveness make them suitable for humidity sensor applications.